

QR code to access the technical documentation website

TORRIX ... XTS ...

Magnetostrictive Level Sensor with Display (en)

Art. No.	Version	Edition
350372	2	2025-01

Table of Contents

1	Characteristics	1
1.1	TORRIX XTS Variants	2
2	Safety Instructions	3
3	Design and Function	4
3.1	TORRIX XTS with Screw Connection	5
3.2	TORRIX XTS F with Flange	6
3.3	TORRIX XTS B for Bypass	7
4	Mounting	8
4.1	Mounting with screw-in unit	9
4.2	Mounting with flange	10
4.3	Mounting with Bypass	10
5	Electrical connection	11
5.1	Connection Diagrams	12
5.1.1	Wiring diagram TORRIX XTS	
5.1.2 5.1.3	Wiring diagram TORRIX Ex XTS Wiring diagram TORRIX Exd XTS	
5.1.4	Wiring diagram TORRIX (Exd) XTSH heater	
5.2	Length of the connection cable (TORRIX 4 20 mA variants)	14
5.3	Wiring	15
5.3.1	Wiring the TORRIX (Ex) XTS	
5.3.2	Wiring the TORRIX (Exd) XTSH (with heater)	17
6	Indication and adjustment module	18
6.1	Rotation of the display and adjustment module	18
6.2	Operation	18
6.2.1	Arrangement of the keys / magnet sensors	
6.2.2	Function of the keys / magnet sensors	19
6.3	Measured value display	
6.4	Simulation	21
6.5	Error display	22
6.6	lcons	22

/	Adjustment	23
7.1	TORRIX XTS Configuration	23
7.2	Menu Structure	25
8	Maintenance	28
8.1	Servicing	28
8.2	Return Shipment	28
9	Technical Data	29
9.1	Sensor	29
9.2	Float	30
10	List of Figures	31
11	Annex	32
11.1	EU Declaration of Conformity	32
11.2	EU-Type Examination Certificate	33
11.3	Instructions	41
11.4	SIL Certificate	48
11.5	SIL Safety Manual	52
11.6	Petroleum & Explosives Safety Organisation (PESO) Approval	59

© Copyright:

Reproduction and translation are permitted solely with the written consent of the FAFNIR GmbH. The FAFNIR GmbH reserves the right to carry out product alterations without prior notice.

1 Characteristics

The TORRIX ... XTS ... is a high-precision level sensor for continuous level and interface measurement of liquids in containers with an additional display (XTS) for showing up to 3 different TORRIX measured values at the probe head.

The measuring principle of the sensor uses the physical effect of the magnetostriction and is largely unaffected by the temperature. This method is particularly ideal where level measurements are required to be extremely accurate, such as in the chemical industry.

The TORRIX XTS is available with the following (optional) features:

- Media-contacting probe tube of stainless steel (standard), Hastelloy or titanium
- Straight probe tube with probe tube diameter 12 mm
- Probe lengths from 200 mm to 6 m, as Flex version up to 22 m
- Output signal 4-20 mA and RS-485 serial interface
- Communication via the HART® protocol
- With temperature measurement
- With display heating
- For use in potentially explosive areas with device protection levels Ga (Zone 0 only with intrinsically safe version), Ga/Gb (Zone 0/1) or Gb (Zone 1)
- Process connection as screw-in unit, flange or bypass

The different TORRIX XTS variants are listed in the table on the next page.

For information about the installation of the TORRIX XTS Flex, see:			
	TORRIX Flex Installation Guide multilingual, art. no. 350118		
For the	TORRIX device types without a display, see the technical documentation:		
	TORRIX (with side cable connection), art. no. 350335		
	TORRIX M12 (with M12 connector), art. no. 350164		

Page 1/60 Characteristics

1.1 TORRIX XTS Variants

Туре	Approval	Electrical	Design Measuring accu-	Mechanical design	Process temperature HHT Maximum temperature -40 °C +450 °C HT High temperature -40 °C +250 °C LT Low temperature -65 °C +125 °C NT Normal temperature -40 °C(+85) +125 °C
				B Flex HY PL	Rigid probe tube with 12 mm diameter Probe tube not centered on the probe head (Bypass) Flexible probe tube (rigid parts: F = 200/ 300 mm; T = 500 mm) Construction for use in the hygiene area Plastic coating against very aggressive media
			-5T -A5T -A Standa	Increased r	emperature sensors measurement accuracy and five temperature sensors measurement accuracy (Advanced)
		XTS XTSH			protocol and setting button and digital display protocol, setting button, digital display and heating (only Exd and
	Ex Exd	• •	oval intrinsic safe		r protection by housing "t" and intrinsic safety "ia" for " XT"
TORRIX		magnetos	trictive level sens	or with connect	tion terminals or plugs

Example:

TORRIX Ex XTS B is a TORRIX XTS with Bypass assembly for use in hazardous areas.

Characteristics Page 2/60

2 Safety Instructions

The TORRIX is used for level and interface measurement of liquids in containers. Only use the sensor for this purpose. The manufacturer accepts no liability for any form of damage resulting from improper use. Observe and follow all safety notes and the operating instructions.

The level sensor has been developed, manufactured and tested in accordance with the latest good engineering practices and generally accepted safety standards. Nevertheless, hazards may arise from its use. Observe the following safety instructions:

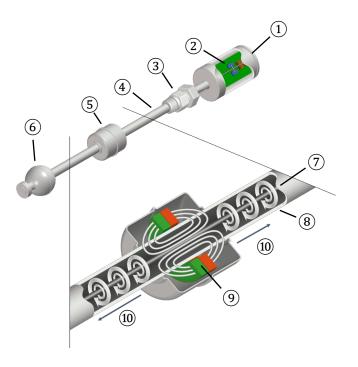
- Do not change or modify the level sensor or add any equipment without the prior consent of the manufacturer.
- The installation, operation and maintenance of the level sensor only be carried out by expert personnel. Specialised knowledge must be acquired by regular training.
- Operators, installers and service technicians must comply with all applicable safety regulations. This also applies to any local safety and accident prevention regulations which are not stated in this guide.

Special instructions are indicated in this manual with the following symbols:

If these safety instructions are not observed, it may result in the risk of accident or damages.

Useful information which ensures continued and correct operation of the equipment and makes your work easier.

REACH Regulation


The TORRIX sensors contain a lead-titanium-zirconium-oxide, which belongs to the substances of very high concern (SVHC) according to Regulation (EG) No. 1907/2006 (REACH). A corresponding note can be found on our website at: www.fafnir.com.

Page 3/60 Safety Instructions

3 Design and Function

The level sensors consist of a probe head (1) and a probe tube (4) made of stainless steel. On the probe tube is a screw-in unit (3) (cutting ring fitting or ferrule fitting) for height-adjustable mounting in the container or a flange for fixed installation or the probe tube is mounted outside the container on a Bypass. A float (5) moves on the probe tube or in the Bypass for continuous measurement of the product fill level and optionally another float (6) for a continuous interface measurement.

- 1 Probe head
- 2 Sensor electronics
- 3 Screw-in unit
- 4 Probe tube
- 5 Product float
- 6 Interface float
- 7 Magnetostrictive wire
- 8 Circular magnetic field
- 9 Permanent magnet
- 10 Torsion pulse

Figure 1: How the magnetostrictive measuring principle works

The sensor operates according to the magnetostrictive measuring principle. The probe tube contains a wire (7) made of magnetostrictive material. The sensor electronics (2) transmit pulses through the wire, which generate a circular magnetic field (8). Permanent magnets (9) are used as filling level sensors which are installed in both the product float (5) and the interface float (6). The magnetic field of the float magnets (9) axially magnetises the wire in this area. The superposition of the two magnetic fields produces a torsional wave (10) at the float position, which then propagates along the wire in both directions. One torsion pulse runs directly to the probe head and the other one is reflected at the bottom end of the probe tube. The time between the current pulse being transmitted and the two torsion pulses arriving at the probe head is measured and the float position calculated. The position of the interface float float is calculated by measuring a second pulse.

Design and Function Page 4/60

3.1 TORRIX XTS with Screw Connection

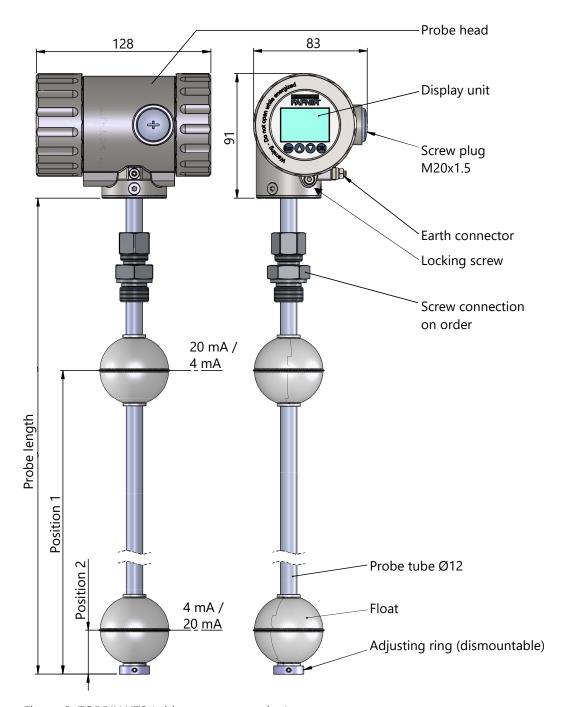


Figure 2: TORRIX XTS (with screw connection)

Page 5/60 Design and Function

3.2 TORRIX XTS F with Flange

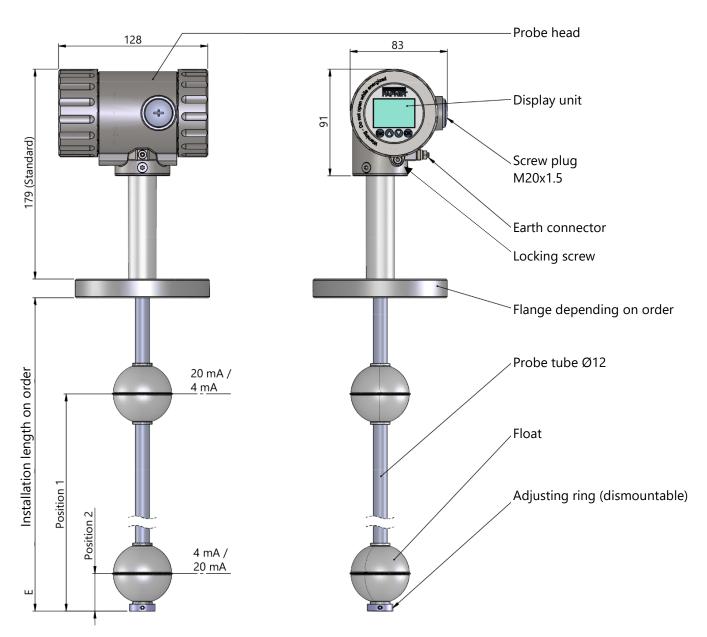


Figure 3: TORRIX XTS F (Flange)

Design and Function Page 6/60

3.3 TORRIX XTS B for Bypass

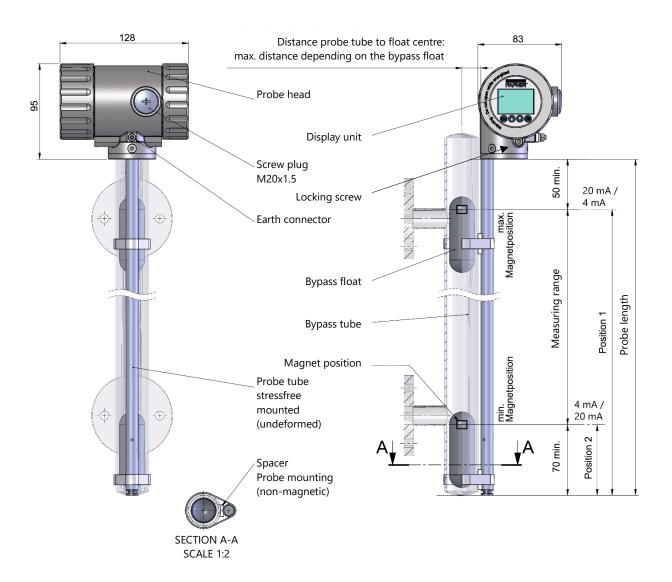


Figure 4: TORRIX XTS B (Bypass)

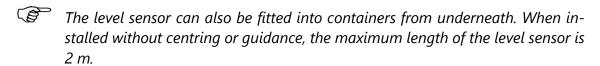
The TORRIX Bypass type is supplied without process connection or float.

Page 7/60 Design and Function

4 Mounting

This section describes how to install the level sensor depending on the type of the device (see the following figures).

For the installation and maintenance of the sensors, all national Regulations as well as the generally accepted rules of engineering and this manual must be observed.



This also applies to any local safety and accident prevention regulations which are not stated in this manual.

During installation, take great care not to bend the probe tube, and protect the float from shock and impact loads.

If the float is removed during assembly, it must be pushed back onto the probe tube with the "TOP" marking oriented towards the probe head so that a correct measurement can be made.

Mounting Page 8/60

4.1 Mounting with screw-in unit

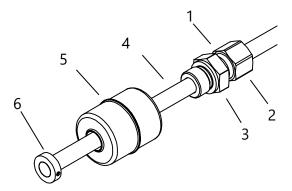
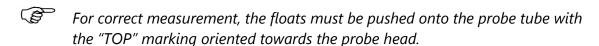


Figure 5: Mounting with screw-in unit


- 1 Screw-in unit
- 2 Union nut
- 3 Screw-in thread
- 4 Probe tube
- 5 Float
- 6 Adjusting ring

Dismantling the floats is only necessary if the floats do not fit through the mounting hole in the tank. Otherwise, follow steps 4, 7 and, if necessary, 8.

Insert the level sensor into the tank (see Figure 5):

- (1) Loosen the threaded pins from the adjusting ring (6) and remove the adjusting ring
- (2) Remove the float (5) from the probe tube (4)
- (3) If necessary, slide the screw-in unit (1) on the probe tube
- (4) Insert the level sensor into the tank, provide the screw-in thread (3) with a suitable sealing material, screw it in and tighten
- (5) Slide the float (5) back onto the probe tube (4)

- (6) Push on the adjusting ring (6), position the threaded pins over the groove and tighten
- (7) Adjust the height of the process connection, grease the union nut (2) with Gliss Lubricant 5GP or a similar grease paste for pre-assembly of stainless steel cutting rings and fix it finger-tight by hand
- (8) Fix the union nut (2) with a wrench by a 1½ clockwise turn (see following figure)

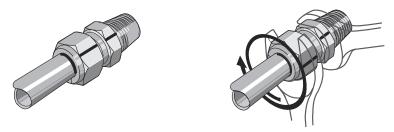


Figure 6: Tightening the compression fitting

Page 9/60 Mounting

4.2 Mounting with flange

Because of the risk of bending, TORRIX Flange must not be held at the probe tube.

The bolts or nuts and the seals are the responsibility of the operating company and must be selected depending on the fluid.

The probe tube is firmly welded to the flange, so the installation length cannot be changed.

- (1) Fasten flange and seal with the flange bolts and nuts.
- (2) If the float does not fit through the installation opening, see chapter "Mounting with screw-in unit".

4.3 Mounting with Bypass

The level sensor is mounted at the side of the bypass tube using suitable non-magnetic fasteners, see Figure 4: TORRIX XTS B (Bypass).

To ensure reliable gauging, the probe tube must be fitted with no deformation on the outside.

The distance between the probe and bypass tubes must be as small as possible.

Only floats approved by FAFNIR can be used.

Mounting Page 10/60

5 Electrical connection

The electrical connection is made on the side of the probe head e.g. via an M20 \times 1.5 cable gland.

The earth connector on the probe head can be used for earthing or equipotential bonding.

The earthing or equipotential bonding must be carried out by the installer in accordance with the respective national installation regulations.

Protect the probe head against the ingress of water. A secure sealing must be guaranteed. Make sure that the cable glands are screwed tight.

For TORRIX Ex... versions, the technical data of the EU-Type Examination Certificate and the instructions must be observed (see appendix).

In the intrinsically safe version, the TORRIX Ex level sensor may be connected in potentially explosive atmospheres only to associated equipment that have been certified by a recognised inspection authority.

If the level sensor is used in a potentially explosive atmospheres, the permissible external capacitance (C_o) and inductance (L_o) of the associated equipment must not be exceeded, see electrical data of the equipment.

The connecting cable to the associated apparatus must be marked if used in potentially explosive atmosphere, preferably as blue cable for intrinsically safe electric circuits.

A certified "Ex d" or "Ex t" cable gland / cable connection (depending on the application) must be used for the TORRIX Exd XTS.

Page 11/60 Electrical connection

5.1 Connection Diagrams

5.1.1 Wiring diagram TORRIX XTS

The level sensor without Ex approval is installed according to the following wiring diagram:

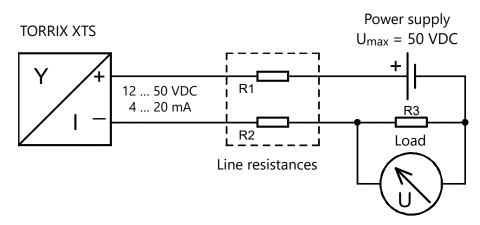


Figure 7: Wiring diagram TORRIX XTS

Power supply: $U_{max} = 50 \text{ VDC}$

Minimum supply voltage: Umin = 12 VDC

Maximum current consumption: $I_{max} = 21.5 \text{ mA}$

5.1.2 Wiring diagram TORRIX Ex XTS

The level sensor TORRIX Ex XTS with Ex i approval (intrinsically safe) is installed in a potentially explosive atmosphere according to the following wiring diagram:

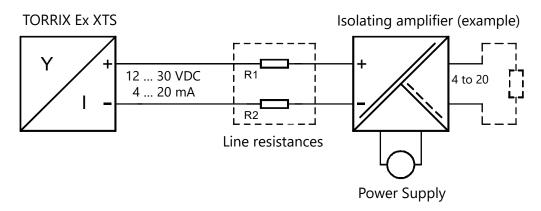


Figure 8: Wiring diagram TORRIX Ex XTS

Power supply: $U_{max} = 30 \text{ VDC}$

Minimum supply voltage: $U_{min} = 12 \text{ VDC}$

Maximum current consumption: $I_{max} = 21.5 \text{ mA}$

Electrical connection Page 12/60

5.1.3 Wiring diagram TORRIX Exd XTS

The TORRIX Exd XTS level sensor with Ex d approval is installed in a potentially explosive atmosphere according to the following wiring diagram:

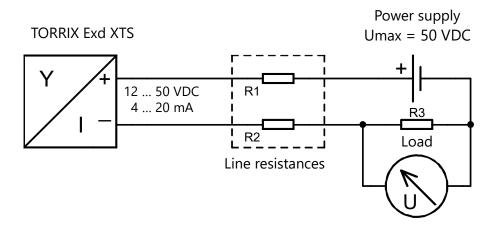


Figure 9: Wiring diagram TORRIX Exd XTS

Power supply: $U_{max} = 50 \text{ VDC}$

Minimum supply voltage: Umin = 12 VDC

Maximum current consumption: $I_{max} = 21.5 \text{ mA}$

5.1.4 Wiring diagram TORRIX (Exd) XTSH heater

The heater for the TORRIX (Exd) XTSH level sensor is installed according to the following wiring diagram:

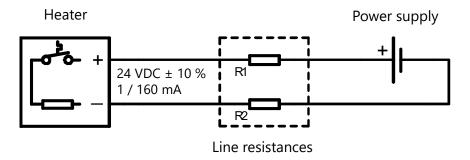


Figure 10: Wiring diagram TORRIX (Exd) XTSH heater

Power supply: $U_{max} = 24 \text{ VDC} + 10\%$

Minimum supply voltage: Umin = 24 VDC - 10%

Current consumption: I = 160 mA

Page 13/60 Electrical connection

5.2 Length of the connection cable (TORRIX 4 ... 20 mA variants)

The cable (length and cross-section) must be chosen so that the supply voltage will not fall below the sensor-specific minimum voltage (U_{min}) for the level sensor in the case of the highest current consumption (I_{max}).

The maximum resistance (supply voltage ÷ maximum current consumption) consisting of the cable resistances and the load of connected devices must not be exceeded. The maximum cable length is calculated as follows:

L = cable length [m]

U = supply voltage [VDC] minus tolerance value (e.g. ±5 %)

U_{min} = minimum supply voltage [VDC] I_{max} = maximum current consumption [A]

 $R_B = maximum load resistance [\Omega]$

 R_A = cable resistance per m [Ω /m] at cable cross-section A [mm²]

Cable length L
$L = (((U - U_{min}) / I_{max}) - R_B) / R_A$

The following table shows the cable resistance R_A per m copper cable of different cross-sections:

Cable cross-section A [mm²]	Cable resistance R_A per m copper cable $[\Omega/m]$
0.5	0.0356
1.0	0.0178

Example calculation for determining the cable length:

Supply voltage U = 24 VDC - 5 % = 22.8 VDC

Minimum supply voltage at the level sensor $U_{min} = 12 \text{ VDC}$

Maximum current consumption $I_{max} = 21.5 \text{ mA}$

Maximum load $R_B = 100 \Omega$

Cable resistance $R_A = 0.0356 \Omega/m$ at cable cross-section $A = 0.5 \text{ mm}^2$

$$L = (((22.8 - 12) / 0.0215) - 100) / 0.0356 = 11,301 m$$

A copper cable (2-core) can theoretically be up to 5,650 m long with the parameters of this example.

Electrical connection Page 14/60

5.3 Wiring

The level sensors may only be wired with the power disconnected.

The terminal compartment is accessible after removing the rear screw cover from the probe head. To do this, screw the locking screw of the cover into the housing with a 3 mm Allen key.

After the wiring has been completed, the cover must be screwed on again and secured against unintentional loosening.

The electrical connection is made using the push-in PCB terminal clamps.

Fine-wire conductors with wire-end ferrules and single-wire conductors can be plugged in directly. The terminal clamps can be unlocked with a screwdriver to insert or remove the conductors. The blade width should be 3.5 x 0.5 mm.

The permissible cable cross-section for single-wire conductors is in the range of 0.5 to 2.5 mm² (20 to 12 AWG). A cable cross-section in the range of 0.5 to 1.5 mm² is permissible for fine-wire conductors with wire-end ferrules.

For the wiring, continue as follows:

A certified Ex d or Ex t cable gland (depending on the application) must be used for the TORRIX Exd XTS.

- Insert the connection cable through the lateral opening into the terminal compartment
- connect the connection cable to the right PCB terminal clamps

Page 15/60 Electrical connection

5.3.1 Wiring the TORRIX (Ex) XTS

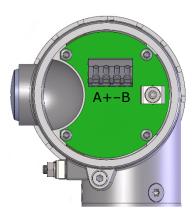


Figure 11: Terminal compartment of TORRIX (Ex) XTS

Signal	Connection
Used internally	Α
Sensor voltage	+
Sensor voltage	_
Used internally	В

Pin assignment of the 4-pin PCB terminal clamp in the terminal compartment

The connection cable between the (intrinsically safe) TORRIX (Ex) XTS and the associated equipment must have the following properties:

- 2-wire unshielded cable
- For Ex ia applications the colour blue or marked blue (cable for intrinsically safe power circuits)

Electrical connection Page 16/60

5.3.2 Wiring the TORRIX (Exd) XTSH (with heater)

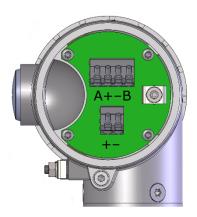


Figure 12: Terminal compartment of TORRIX (Exd) XTSH

Signal	Connection
Used internally	Α
Sensor voltage	+
Sensor voltage	_
Used internally	В

Pin assignment of the 4-pin PCB terminal clamp in the terminal compartment

For the extended temperature range (-55 $^{\circ}$ C to +85 $^{\circ}$ C), the TORRIX (Exd) XTSH is additionally equipped with a heater for the display. The supply voltage for the heater is connected to the 2-pin PCB terminal clamp.

Signal	Connection
Heater voltage	+
Heater voltage	_

Pin assignment of the 2-pin PCB terminal clamp in the terminal compartment

The connection cable between the TORRIX (Exd) XTS(H) and the associated equipment must have the following properties:

- TORRIX (Exd) XTS: 2-core, unshielded cable
- TORRIX (Exd) XTSH: 4-core, unshielded cable

A separate power supply must be used to supply the heater.

The heater does not have to be switched on externally, but switches on automatically by itself when needed when the supply voltage is connected.

Page 17/60 Electrical connection

6 Indication and adjustment module

The TORRIX XTS is equipped with an indicating and adjustment module to display the measured values and for configuration.

The module for display and adjustment can be rotated to adapt to the conditions at the installation site.

6.1 Rotation of the display and adjustment module

When delivered, the display and adjustment module is aligned with the lower edge towards the probe tube. If this adjustment is to be changed, the housing cover with the viewing window must first be removed. To do this, screw the locking screw of the cover into the housing with a 3 mm Allen key. When the cover is removed, the display and adjustment module can be rotated in a range of almost 360°. Additional detents every 90° make adjustment easier. After alignment, screw the housing cover back on and secure with the locking screw.

Do not turn beyond the end stop, otherwise damage may occur.

6.2 Operation

The TORRIX XTS indicating and adjustment module is operated in two different ways, depending on whether the housing is open or closed. The actions performed by the operator are shown on the display.

Open housing

When the housing is open, the operation is done via the 4 keys on the membrane keyboard, which are located below the display.

Closed housing

When the housing is closed, the operation is done with a magnetic pen, the *FAFNIR magnetic* pen, effecting through the display glass. For this purpose, 4 magnetic sensors are arranged under the membrane keyboard in the area of the respective keys.

6.2.1 Arrangement of the keys / magnet sensors

The following figure shows the display with a membrane keyboard and the *FAFNIR magnetic* pen.

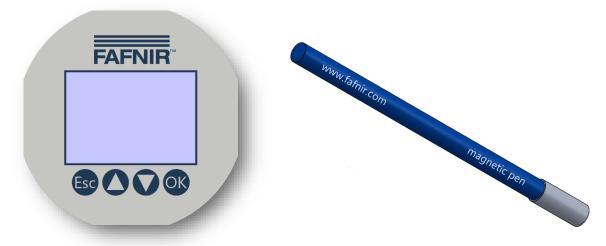


Figure 13: Membrane keyboard and FAFNIR magnetic pen

6.2.2 Function of the keys / magnet sensors

The individual keys / magnet sensors have the following functions:

- Jump back to the higher menu
- Back to the previous position, when entering text or multi-digit numbers
- Cancel without saving

- Select the previous menu item
- Increases the value at the current position (e.g. 6 → 7), when entering text or multi-digit numbers

- Select the next menu item
- Decreases the value at the current position (e.g. 7 → 6), when entering text or multi-digit numbers
- Select the display representation for displaying measured values

- Change from the measured value display to the main menu
- Jump to the selected submenu
- Forward to the next position, when entering text or multi-digit numbers
- Select and save value for parameter

6.3 Measured value display

The following information is shown in the measured value display:

- TAG (measuring point)
- Measured value (up to 3 measured values can be displayed)
- Bar graph

When the current is less than 4 mA, the backlight will turn off automatically.

You can switch between 3 display options for the measured value display (1, 2 or 3 measured values) by pressing the down arrow key.

The measured values to be displayed can be selected in the menu under Configuration \rightarrow Display \rightarrow Values.

The bar graph shows the recent current on the 4 ... 20 mA interface in percentage.

Measured value display with one measured value:

Figure 14: Measured value display with one measured value

Measured value display with two measured values:

Figure 15: Measured value display with two measured values

Measured value display with three measured values:

Figure 16: Measured value display with three measured values

6.4 Simulation

A configured simulation is only started when you switch back from the configuration menu to the measured value display.

The active simulation is identified by the "SIM" indicator in the measured value display. An active simulation is ended either by pressing the "OK" button (change from the measured value display to the configuration menu) or automatically after 5 minutes.

6.5 Error display

Errors detected by the TORRIX XTS are shown as error messages with plain text information on the display.

Figure 17: Error display, supply voltage too low

The following error messages can be displayed:

- Signature error
- Parameter error
- HART parameter error
- Probe internal error
- Probe error communication
- Supply voltage too low

6.6 Icons

The icons described in the following are used by the TORRIX XTS indicating and adjustment module to signal certain states.

<u>Fault</u>

The error display is shown. An error prevents normal function.

X

Configuration

The configuration is shown. Changes can be made according to the menu structure.

SIM

Simulation

The simulation that can be activated via the Diagnosis ▶ Simulation menu is running.

The current on the 4 ... 20 mA interface is simulated and therefore does not follow the process value.

7 Adjustment

7.1 TORRIX XTS Configuration

The configuration is done with the computer using the FAFNIR HART-Setup configuration tool, see technical documentation

FAFNIR HART SETUP art. no. 350225

Configurations for the TORRIX XTS can also be done using the indicating and adjustment module. Pressing the OK button changes the measured value display to the main menu of the configuration.

After closing the configuration menu all changes are automatically stored and remain even after turning off the TORRIX XTS.

Do not interrupt the power supply with active configuration menu, since the configuration is not completely stored at voltage interruption.

When changing parameters are stored in the controller's data flash, the current on the 4...20 mA interface is briefly set to 12 mA and then returns to the original current.

Display of the main menu

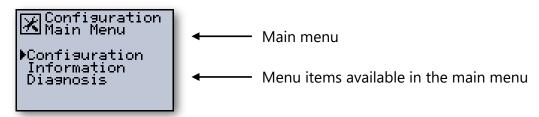


Figure 18: Configuration - Main Menu

Display of the sub-menu (in this case: language selection)

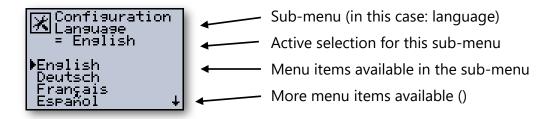


Figure 19: Configuration - Language

Page 23/60 Adjustment

If there are more than the currently displayed menu items, this is indicated by an arrow in the lower right corner of the display. The menu items that are not visible can be shown by scrolling up or down using the arrow keys.

The configuration will automatically be exited after 2 minutes if there is no further operation.

Adjustment Page 24/60

7.2 Menu Structure

Main Menu / Configuration / Display / Language

The active language is always named above after the equals sign:

➤ English ➤ Deutsch ➤ Français ➤ Español ➤ Português ➤ Italiano ➤ Русский

Main Menu / Configuration / Display / TAG

Enter the measuring point designation (8 characters). OK to move to the next character. Arrow keys to select the character. To exit the menu press ESC when the cursor is on the first character.

Main Menu / Configuration / Display / Values

Select which measured value is to be displayed as value 1, value 2, or value 3 in the value display. Available values are:

- None
- DV0 LEV1 (level of upper float)
- DV1 LEV2 (level of lower float)
- DV2 TEMP (temperature)
- DV3 LEV1-2 (level 1 minus level 2)
- Current
- Percent (Current in percent)

Main Menu / Configuration / Display / Mode

Select the number of measured values to be displayed. Available options are:

1 value, 2 values, or 3 values.

In the value display it is possible to change the number of measured values by pressing the arrow-down key. After starting up or returning from the configuration menu to the value display the configured number of measured values is displayed again.

Main Menu / Configuration / Display / Lighting

Enable or disable the backlight.

Main Menu / Configuration / Measurement / Units

- Level (mm, cm, m, in, ft)
- Temperature (°C, °F)

Main Menu / Configuration / Measurement / Offset

Float offset adjustment of Level 1, Level 2.

Page 25/60 Adjustment

Main Menu / Configuration / Measurement / Damping

Damping adjustment of Level 1, Level 2, in seconds:

0s, 0.0625 s, 0.125 s, 0.25 s, 0.5 s, 1 s, 2 s, 4 s, 8 s, 16 s, 32 s, 64 s.

Main Menu / Configuration / Output / Variable

The variable to which to the 4 to 20 mA signal refers is determined here.

Main menu / Configuration / Output / 4 mA point (input/acceptance)

- Enter the 4 mA point
- Accept the recent measured value (float position) as 4 mA point

If the distance between the 4 mA point and the 20 mA point falls below a minimum of 5 mm when a new 4 mA point is accepted, the measuring direction is automatically reversed.

Main menu / Configuration / Output / 20 mA point (input/acceptance)

- Enter the 20 mA point
- Accept the recent measured value (float position) as 20 mA point

If the distance between the 4 mA point and the 20 mA point falls below a minimum of 5 mm when a new 20 mA point is accepted, the measuring direction is automatically reversed.

Main Menu / Configuration / Output / Alarm current

Current that is output in the event of an error: 3.6 mA / 21.5 mA.

Main Menu / Information / Device

Device type and device number

Main Menu / Information / Version

Firmware and hardware version of the probe

Main Menu / Information / Properties

Probe length, number of floats, number of temperature sensors.

Main Menu / Information / Communication

Shows which communication option the probe supports

Main Menu / Information / Calibration

Date of the last calibration of the device

Adjustment Page 26/60

<u>Main_Menu / Diag</u>nosis / Status

Current status of the device

Main menu / Diagnosis / Min./Max.

Shows the minimum and maximum value that the probe has recorded since restart: Level 1, Level 2, Temperature.

Main menu / Diagnosis / Simulation / Operating mode

Off: Simulation disabled

Fixed: the mA value set for "Low" is output

Alternating: the mA value set for "Low" and for "High" are output alternately

Main menu / Diagnosis / Simulation / Operating Variable

Variable in the simulation (e.g. current 4-20 mA)

Main menu / Diagnosis / Simulation / Value

mA value for the simulation

Low: Setting the low mA value for the simulation **High**: Setting the high mA value for the simulation

Main menu / Diagnosis / Simulation / Cycle time

Setting the time for the change of the mA value ("Low" / "High") in the "Simulation" operating mode with the "Alternating" option.

Main Menu / Diagnosis / Default

Resetting the probe to the factory setting defaults

Main Menu / Diagnosis / Probe

Analysis values of the probe:

- Quality of measurement
- Attenuation length
- Pulse duration
- Pulse height
- Start level

<u>Main Menu / Diagnosis / Restart</u>

Restart the probe

Page 27/60 Adjustment

8 Maintenance

8.1 Servicing

The filling level sensor is maintenance-free.

8.2 Return Shipment

Before returning any FAFNIR equipment, the Return Material Authorization (RMA) from FAFNIR customer service is required. Please contact your account manager or the customer service to receive the instructions on how to return goods.

The return of FAFNIR products is only possible after approval by the FAFNIR customer service.

Maintenance Page 28/60

9 Technical Data

Further technical data you also find in the EU-Type Examination Certificate and in the instructions, see the appendix of this manual.

9.1 Sensor

Electrical connection TORRIX (Ex) XTS TORRIX (Exd) XTSH	2-wire terminal 4-wire terminal 3.8 20.5 mA current consumption for measured value output 3.6 mA or 21.5 mA current consumption in the event of a fault 1 mA / 160 mA current consumption heater (off / on)
Supply voltage TORRIX (Exd) XTS TORRIX Ex XTS Heater	12 50 VDC 12 30 VDC 24 VDC ±10 % (only with type TORRIX (Exd) XTSH)
Process connection	Screw-in unit for stepless height adjustment Standard G ½ (compression fitting) Flange (on request) Material see probe tube
Probe head	Height 91 95 mm (depending on version) Diameter 83 mm Depth 128 mm Material stainless steel (1.4404 / 316L) Cable entry / cable gland Temperature –20 +85 °C Temperature –55 +85 °C (with heating)
Probe tube	Probe lengths from 100 mm to 6 m, as Flex version up to 22 m Diameter 12 mm (other diameters on request) Material stainless steel (1.4571 / 316Ti or 1.4301 / 304) (Hastelloy, or other materials on request) Standard temperature —40 °C +85 °C Normal temperature (NT) —40 °C +125 °C High temperature (HT) —40 °C +250 °C Maximum temperature (HHT) —40 °C +450 °C Low temperature (LT) —65 °C +125 °C
Communication	TORRIX (Ex) XTS 4 20 mA / HART

Page 29/60 Technical Data

Measuring accuracy Digital component HT/HHT	Linearity better than ± 1 mm or ± 0.05 %, better than ± 0.01 % per K Repetition accuracy better than 0.1 mm Resolution better than 50 μ m
Measuring accuracy Digital component NT/LT (on request)	Linearity better than ± 0.2 mm or ± 0.01 %, better than ± 0.001 % per K Repetition accuracy better than 0.05 mm Resolution better than 10 μ m
Measuring accuracy Analogue component	Linearity better than $\pm 0.01\%$ Temperature coefficient better than 0.01% per K Resolution better than 1 μ A (15 bit)

9.2 Float

The float is an essential component of the level sensor that must be matched to the medium in respect of density, pressure resistance and material durability.

The following floats are exchangeable and can be ordered separately. Other float types and materials are available on request.

The density and magnet position of floats of the same type may vary slightly, so that a readjustment may be necessary.

All floats can be used at a pressure of 1 bar (vacuum) up to the maximum operating pressure.

Excerpt from the product range of floats:

Min. density of	Material	Max. operating pressure	Shape
medium [g/cm³]		[bar] at 20 °C *)	[mm]
0.5	Titanium	20	Ball ø 50
0.6	1.4571 (316Ti)	20	Ball ø 52
0.7	1.4571 (316Ti)	16	Cylinder ø 53
0.7	C276	10	Cylinder ø 46
0.7	1.4571 (316Ti)	40	Ball ø 52
0.85	1.4571 (316Ti)	20	Ball ø 43
0.95	1.4571 (316Ti)	50	Ball ø 43

^{*)} above 50 °C the maximum operating pressure decreases

Pressure resistance is guaranteed for undamaged floats only. Even the most minor and invisible dents, which can occur if, for example, the float is dropped from a bench onto a stone floor, are sufficient to cause a significant deterioration in pressure resistance.

Technical Data Page 30/60

10 List of Figures

Figure 1: How the magnetostrictive measuring principle works	4
Figure 2: TORRIX XTS (with screw connection)	5
Figure 3: TORRIX XTS F (Flange)	6
Figure 4: TORRIX XTS B (Bypass)	7
Figure 5: Mounting with screw-in unit	9
Figure 6: Tightening the compression fitting	9
Figure 7: Wiring diagram TORRIX XTS	12
Figure 8: Wiring diagram TORRIX Ex XTS	12
Figure 9: Wiring diagram TORRIX Exd XTS	13
Figure 10: Wiring diagram TORRIX (Exd) XTSH heater	13
Figure 11: Terminal compartment of TORRIX (Ex) XTS	16
Figure 12: Terminal compartment of TORRIX (Exd) XTSH	17
Figure 13: Membrane keyboard and FAFNIR magnetic pen	19
Figure 14: Measured value display with one measured value	20
Figure 15: Measured value display with two measured values	21
Figure 16: Measured value display with three measured values	21
Figure 17: Error display, supply voltage too low	22
Figure 18: Configuration - Main Menu	23
Figure 19: Configuration - Language	23

EU-Konformitätserklärung EU Declaration of Conformity Déclaration UE de Conformité Dichiarazione di Conformità UE

FAFNIR GmbH, Deutschland / Germany / Allemagne / Germania

erklärt als Hersteller in alleiniger Verantwortung, dass die Produkte declares as manufacturer under sole responsibility that the products déclare sous sa seule responsabilité en qualité de fabricant que les produits dichiara sotto la sola responsabilità del produttore, che i prodotti sono

Füllstandsensoren / Filling Level Sensors / Capteurs de Niveau / Sensori di livello TORRIX ... / VISY-Stick ...

den Vorschriften der europäischen Richtlinien comply with the regulations of the European directives sont conformes aux réglementations des directives européennes suivantes rispetta i regolamenti delle direttive europee

2011/65/EU	Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten	
2011/65/EU	Restriction of the use of certain hazardous substances in electrical and electronic equipment	RoHS
2011/65/UE	Limitation de l'utilisation de certaines substances dangereuses dans les équipements électriques et électroniques	RoHS
2011/65/UE	Restrizione dell'uso di determinate sostanze pericolose nelle apparecchiature elettriche ed elettroniche	RoHS
2014/30/EU	Elektromagnetische Verträglichkeit	EMV
2014/30/EU	Electromagnetic compatibility	EMC
2014/30/UE	Compatibilité électromagnétique	CEM
2014/30/UE	Compatibilità elettromagnetica	CEM
2014/34/EU	Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen	ATEX
2014/34/EU	Equipment and protective systems intended for use in potentially explosive atmospheres	ATEX
2014/34/UE	Appareils et systèmes de protection destinés à être utilisés en atmosphères explosibles	ATEX
2014/34/UE	Apparecchi e sistemi di protezione destinati a essere utilizzati in atmosfera potenzialmente esplosiva	ATEX

durch die Anwendung folgender harmonisierter Normen entsprechen by applying the harmonised standards par l'application des normes applicando le norme armonizzate

RoHS / RoHS / RoHS / RoHS EMV / EMC / CEM / CEM ATEX / ATEX / ATEX / ATEX EN IEC 63000:2018 EN 61326-1:2013

EN 60079-26:2015

EN IEC 60079-0:2018

EN 60079-1:2014 EN 60079-31:2014 EN 60079-11:2012

Die Produkte sind bestimmt als Elektro- und Elektronikgeräte der RoHS-The products are determined as electrical and electronic equipment of RoHS

The products are determined as electrical and electronic equipment of RoHS Les produits sont déterminés comme des équipements électriques et électroniques de RoHS I prodotti sono determinati come apparecchiature elettriche ed elettroniche della RoHS

Kategorie / Category / Catégorie / Categoria

Überwachungs- und Kontrollinstrumenten in der Industrie / Industrial Monitoring and Control Instruments / Instruments de contrôle et de surveillance industriels / Strumenti di monitoraggio e controllo industriali

Die Produkte entsprechen den EMV-Anforderungen The products comply with the EMC requirements Les produits sont conformes aux exigences CEM I prodotti sono conformi ai requisiti CEM

Störaussendung / Emission / Émission / L'emissione Störfestigkeit / Immunity / D'immunité / Immunità Klasse B / Classe B / Classe B Industrielle elektromagnetische Umgebung / Industrial electromagnetic environment / Environnement électromagnétique industriel / Ambiente elettromagnetico industriale

Die notifizierte Stelle TÜV NORD CERT GmbH, 0044 hat eine EU-Baumusterprüfung durchgeführt und folgende Bescheinigung ausgestellt The notified body TÜV NORD CERT GmbH, 0044 performed a EU-type examination and issued the certificate L'organisme notifié TÜV NORD CERT GmbH, 0044 a effectué examen UE de type et a établi l'attestation L'organismo notificato TÜV NORD CERT GmbH, 0044 ha effettuato esame UE del tipo e rilasciato il certificato

TÜV 99 ATEX 1496 X

TORRIX Ex ... / VISY-Stick ...

Hamburg, 2023-04-14

Ort, Datum / Place, Date / Lieu, Date / Luogo, data

Geschäftsführer / Managing Director / Gérant / Direttore Generale: René Albrecht

Seite / Page / Page / Pagina 1/1

EN 60079-11:2012

Translation

(1) EU-Type Examination Certificate

(2) Equipment and protective systems intended for use in potentially explosive atmospheres, **Directive 2014/34/EU**

(3) Certificate Number TÜV 99 ATEX 1496 X Issue: 03

(4) for the product: Filling level sensors type VISY-Stick ... and type TORRIX Ex...

(5) of the manufacturer: **FAFNIR GmbH**

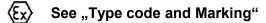
(6) Address: Schnackenburgallee 149 c

22525 Hamburg

Germany

Order number: 8003035365

Date of issue: See date of signature


- (7) The design of this product and any acceptable variation thereto are specified in the schedule to this EU-Type Examination Certificate and the documents therein referred to.
- (8) The TÜV NORD CERT GmbH, Notified Body No. 0044, in accordance with Article 17 of the Directive 2014/34/EU of the European Parliament and the Council of 26 February 2014, certifies that this product has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of products intended for use in potentially explosive atmospheres given in Annex II to the Directive. The examination and test results are recorded in the confidential ATEX Assessment Report No. 22 203 302211.
- (9) Compliance with the Essential Health and Safety Requirements has been assured by compliance with:

EN 60079-1:2014/AC:2018-09

EN 60079-26:2015 EN 60079-31:2014

except in respect of those requirements listed at item 18 of the schedule.

- (10) If the sign "X" is placed after the certificate number, it indicates that the product is subject to the Specific Conditions for Use specified in the schedule to this certificate.
- (11) This EU-Type Examination Certificate relates only to the design, and construction of the specified product. Further requirements of the Directive apply to the manufacturing process and supply of this equipment. These are not covered by this certificate.
- (12) The marking of the product shall include the following:

EN IEC 60079-0:2018/AC:2020-02

TÜV NORD CERT GmbH, Am TÜV 1, 45307 Essen, notified by the central office of the countries for safety engineering (ZLS), Ident. Nr. 0044, legal successor of the TÜV NORD CERT GmbH & Co. KG Ident. Nr. 0032

The deputy of the head of the notified body

TUVNORD Meyer Andreas

Digital unterschrieben von Meyer Andreas Datum: 2023.04.04

19:55:26 +02'00'

Hanover office, Am TÜV 1, 30519 Hannover, Tel. +49 511 998-61455, Fax +49 511 998-61590

This certificate may only be reproduced without any change, schedule included. Excerpts or changes shall be allowed by the TÜV NORD CERT GmbH

(13) SCHEDULE

(14) EU-Type Examination Certificate No. TÜV 99 ATEX 1496 X Issue 03

(15) **Description of product**:

The filling level sensors type VISY-Stick ... and type TORRIX Ex... are used for continuous measurement of liquid levels within potentially explosive areas. Floaters are used to detect the fluid levels. These slide on a sensor tube. For interface or water detection, a second float can be mounted on the sensor tube. In addition, the density of the liquid can be determined by means of a density module.

The temperature measuring chain VISY-Stick ... Temp ... is used to measure temperatures at different heights and does not use any floats.

Type code and Marking:

Type VISY-Stick ... (Ex-relevant designations only):

VISY-Stick Sump	Environmental sensor (Leakage control)
VISY-Stick Advanced	Advanced precision of measurement and temperature sensors
VISY-Stick Flex	Flexible sensor tube
VISY-Stick	Serial communication
VISY-Stick RS485	RS-485 interface
VISY-Stick Temp	Temperature measuring chain
VISY-Stick TLS	TLS interface

Type TORRIX Ex... (Ex-relevant designations only):

TORRIX Ex	420 mA interface (with configuration buttons) optionally with HART protocol
TORRIX Ex C	420 mA interface (without configuration buttons) optionally with HART protocol
TORRIX Ex RS485	RS-485 interface
TORRIX Ex SC	Serial communication
TORRIX Ex TAG	TAG interface (communication in accordance with EN 14116)
TORRIX Ex XT	RS-485- or 420 mA interface optionally with display (Ex i)
TORRIX Exd XT	RS-485- or 420 mA interface optionally with display (Ex d+t+i)
TORRIX ExA	Advanced precision of measurement and temperature sensors
TORRIX Ex Flex	Flexible sensor tube
TORRIX Ex PL	With plastic coating against very aggressive media

P17-F-011 Rev. 02/11.21 Page 2/8

Schedule to EU-Type Examination Certificate No. TÜV 99 ATEX 1496 X Issue 03

 VISY-Stick VISY-Stick (Flex) Temp VISY-Stick RS485 VISY-Stick (Flex) Temp RS485 TORRIX Ex TORRIX Ex C TORRIX Ex RS485 TORRIX Ex SC TORRIX Ex TAG TORRIX Ex XT 	II 1 G II 1/2 G II 2 G II 2 D	Ex ia IIC T6T1 Ga Ex ia IIC T6T1 Ga/Gb Ex ia IIC T6T1 Gb Ex ia IIIC TX°C Db (see thermal data)
 VISY-Stick Advanced VISY-Stick Flex VISY-Stick Advanced RS485 VISY-Stick Flex RS485 TORRIX ExA TORRIX ExPL TORRIX Ex CA TORRIX Ex CA TORRIX Ex C Flex TORRIX Ex RS485A TORRIX Ex RS485A TORRIX Ex RS485PL TORRIX Ex RS485 PL TORRIX Ex SCA TORRIX Ex SCA TORRIX Ex SCA TORRIX Ex SC Flex TORRIX Ex TAGA TORRIX Ex TAGA TORRIX Ex TAGI 	II 1 G II 1/2 G II 2 G II 2 D	Ex ia IIB T6T1 Ga Ex ia IIB T6T1 Ga/Gb Ex ia IIB T6T1 Gb Ex ia IIIC TX°C Db (see thermal data)
VISY-Stick TLSVISY-Stick (Flex) Temp TLS	II 1 G II 1/2 G II 2 G II 2 D	Ex ia IIC T4T1 Ga Ex ia IIC T4T1 Ga/Gb Ex ia IIC T4T1 Gb Ex ia IIIC TX°C Db (see thermal data)
VISY-Stick Advanced TLSVISY-Stick Flex TLS	II 1 G II 1/2 G II 2 G II 2 D	Ex ia IIB T4T1 Ga Ex ia IIB T4T1 Ga/Gb Ex ia IIB T4T1 Gb Ex ia IIIC TX°C Db (see thermal data)
TORRIX Exd XT	II 1/2 G II 2 G II 2 D	Ex ia/db IIC T6T1 Ga/Gb Ex db ia IIC T6T1 Gb Ex ia tb IIIC TX°C Db (see thermal data)
TORRIX ExdATORRIX Exd FlexTORRIX Exd PL	II 1/2 G II 2 G II 2 D	Ex ia/db IIB T6T1 Ga/Gb Ex db ia IIB T6T1 Gb Ex ia tb IIIC TX°C Db (see thermal data)

P17-F-011 Rev. 02/11.21 Page 3/8

Schedule to EU-Type Examination Certificate No. TÜV 99 ATEX 1496 X Issue 03

Electrical data:

VISY-Stick ...; VISY-Stick (Flex) Temp; TORRIX Ex SC...; VISY-Stick Advanced ...;

VISY-Stick ... Flex ...; TORRIX Ex SC...-A; TORRIX Ex SC... Flex and TORRIX Ex SC... PL

Signal and power supply

(Terminals +, -, A, B) or (M12-Plug)

In type of protection intrinsic safety Ex ia IIC/IIB/IIIC Only for connection to certified intrinsically safe circuits.

Maximum values:

 $U_i = 15 \text{ V}$ $I_i = 60 \text{ mA}$ $P_i = 100 \text{ mW}$

Effective internal capacitance $C_i = 10 \text{ nF}$ Effective internal inductance $L_i = 100 \text{ }\mu\text{H}$

VISY-Stick ... RS485; VISY-Stick (Flex) Temp RS485; TORRIX Ex...; TORRIX Ex C...; TORRIX Ex RS485...; TORRIX Ex TAG...; TORRIX Ex XT...; VISY-Stick ... Advanced RS485;

VISY-Stick ... Flex RS485; TORRIX Ex ...-A; TORRIX Ex ... Flex; TORRIX Ex ... PL; TORRIX Ex C...-A; TORRIX Ex C... Flex; TORRIX Ex C... PL; TORRIX Ex RS485...-A;

TORRIX Ex RS485... Flex; TORRIX Ex RS485... PL; TORRIX Ex TAG...-A;

TORRIX Ex TAG... Flex; TORRIX Ex TAG... PL; TORRIX Ex XT...-A; TORRIX Ex XT... Flex and TORRIX Ex XT... PL:

Signal and power supply

(Terminals +, -, A, B resp. +, -) or

(M12-Plug)

In type of protection intrinsic safety Ex ia IIC/IIB/IIIC Only for connection to certified intrinsically safe circuits.

Maximum values:

 $U_{i} = 30 \text{ V}$

 I_i = 200 mA at $T_a \le +70$ °C I_i = 100 mA at $T_a \le +85$ °C

 $P_i = 1 W$

Effective internal capacitance C_i = 10 nF Effective internal inductance L_i = 20 μ H

VISY-Stick ... TLS; VISY-Stick (Flex) Temp TLS; VISY-Stick ... Advanced TLS and VISY-Stick ... Flex TLS:

Signal and power supply (Terminals +, -) or (M12-Plug) In type of protection intrinsic safety Ex ia IIC/IIB/IIIC Only for connection to certified intrinsically safe

circuits.

Maximum values:

 $U_i = 13 \text{ V}$ $I_i = 200 \text{ mA}$ $P_i = 625 \text{ mW}$

Effective internal capacitance C_i = 20 nF Effective internal inductance L_i = 410 μ H

P17-F-011 Rev. 02/11.21 Page 4/8

Page 5/8

Schedule to EU-Type Examination Certificate No. TÜV 99 ATEX 1496 X Issue 03

TORRIX Exd XT...; TORRIX Exd ...-A; TORRIX Exd ... Flex and TORRIX Exd ... PL:

Signal and power supply For connection to non-intrinsically safe circuits with

(Terminals +, -, A, B) the following values:

 $U = 12 V_{d.c.} \dots 50 V_{d.c.}$, $I = 4 mA \dots 20 mA$

 $U_{\rm m} = 253 \text{ V}$

Heating circuit For connection to non-intrinsically safe circuits with

(Terminals -, +) the following values:

 $U = 24 V_{d.c.} \pm 10 \%$

I = 160 mA

Thermal data:

VISY-Stick ...; VISY-Stick (Flex) Temp; TORRIX Ex SC...; VISY-Stick Advanced ...; VISY-Stick ... Flex ...; TORRIX Ex SC...-A; TORRIX Ex SC... Flex and TORRIX Ex SC... PL:

For EPL Ga or EPL Ga/Gb or EPL Gb, the permissible temperature range depending on the variant and the temperature class can be taken from the following table:

Temperature class	Ambient temperature range	Medium temperature range
Т6	-40 °C +50 °C	-40 °C +75 °C
T5	-40 °C +65 °C	-40 °C +90 °C
T4	-40 °C +85 °C	-40 °C +125 °C
Т3	-40 °C +85 °C	-40 °C +190 °C
T2	-40 °C +85 °C	-40 °C +285 °C
T1	-40 °C +85 °C	-40 °C +435 °C

For EPL Db applications, the permissible ambient temperature range depending on the permissible surface temperature can be taken from the following table:

Maximum surface temperature		Ambient temperature range
Dust layer ≤ 5 mm	With total immersion	Ambient temperature range
T ₅ X°C	TX°C	ı a
$X^{\circ}C = T_a + 30 ^{\circ}C$	X°C = 135 °C	-40 °C +85 °C

The equipment is suitable for dusts with an ignition temperature of more than 190 °C under a dust layer of 5 mm (glow temperature).

Schedule to EU-Type Examination Certificate No. TÜV 99 ATEX 1496 X Issue 03

VISY-Stick ... RS485; VISY-Stick (Flex) Temp RS485; TORRIX Ex ...; TORRIX Ex C...; TORRIX Ex RS485...; TORRIX Ex TAG...; TORRIX Ex XT...; VISY-Stick ... Advanced RS485; VISY-Stick ... Flex RS485; TORRIX Ex ...-A; TORRIX Ex ...-A; TORRIX Ex ...-PL; TORRIX Ex C...-A; TORRIX Ex C...-Flex; TORRIX Ex C...-PL; TORRIX Ex RS485...-A; TORRIX Ex RS485...-Flex; TORRIX Ex RS485...-A; TORRIX Ex TAG...-A; TORRIX Ex TAG...-A; TORRIX Ex XT...-A; TORRIX Ex XT...-A; TORRIX Ex XT...-Flex and TORRIX Ex XT...-PL:

For EPL Ga or EPL Ga/Gb or EPL Gb, the permissible temperature range depending on the variant and the temperature class can be taken from the following table:

Temperature class	Ambient temperature range	Medium temperature range
T6	I _i ≤ 100 mA: -40 °C +40 °C I _i ≤ 200 mA: -40 °C +25 °C	-40 °C +75 °C
T5	I _i ≤ 100 mA: -40 °C +55 °C I _i ≤ 200 mA: -40 °C +40 °C	-40 °C +90 °C
T4	I _i ≤ 100 mA: -40 °C +85 °C I _i ≤ 200 mA: -40 °C +70 °C	-40 °C +125 °C
Т3	I _i ≤ 100 mA: -40 °C +85 °C I _i ≤ 200 mA: -40 °C +70 °C	-40 °C +190 °C
T2	I _i ≤ 100 mA: -40 °C +85 °C I _i ≤ 200 mA: -40 °C +70 °C	-40 °C +285 °C
T1	I _i ≤ 100 mA: -40 °C +85 °C I _i ≤ 200 mA: -40 °C +70 °C	-40 °C +435 °C

For EPL Db applications, the permissible ambient temperature range depending on the permissible surface temperature can be taken from the following table:

Maximum surface temperature		Ambient temperature range
Dust layer ≤ 5 mm	With total immersion	Ambient temperature range
T ₅ X°C	TX°C	I a
$I_i \le 100 \text{ mA: } X^{\circ}C = T_a + 40 ^{\circ}C$	Observe EN 60079-14	-40 °C +85 °C
$I_i \le 200 \text{ mA: } X^{\circ}C = T_a + 55 ^{\circ}C$	Observe EN 60079-14	-40 °C +70 °C

The equipment is suitable for dusts with an ignition temperature of more than 200 °C under a dust layer of 5 mm (glow temperature).

P17-F-011 Rev. 02/11.21 Page 6/8

Schedule to EU-Type Examination Certificate No. TÜV 99 ATEX 1496 X

Issue 03

VISY-Stick ... TLS; VISY-Stick (Flex) Temp TLS; VISY-Stick ... Advanced TLS and VISY-Stick ... Flex TLS:

For EPL Ga or EPL Ga/Gb or EPL Gb, the permissible temperature range can be taken from the following tables, depending on the variant and the temperature class:

Temperature class	Ambient temperature range	Medium temperature range
T4	-40 °C +75 °C	-40 °C +125 °C
Т3	-40 °C +85 °C	-40 °C +190 °C
T2	-40 °C +85 °C	-40 °C +285 °C
T1	-40 °C +85 °C	-40 °C +435 °C

For EPL Db applications, the permissible ambient temperature range depending on the permissible surface temperature can be taken from the following table:

Maximum surface temperature		Ambient temperature range
Dust layer ≤ 5 mm T ₅ X°C	With total immersion TX°C	T _a
X°C = 135 °C	X°C = 135 °C	-40 °C +77 °C
$X^{\circ}C = T_a + 110 ^{\circ}C$	Observe EN 60079-14	-40 °C +85 °C

The equipment is suitable for dusts with an ignition temperature of more than 270 °C under a dust layer of 5 mm (glow temperature).

TORRIX Exd XT...; TORRIX Exd ...-A; TORRIX Exd ... Flex and TORRIX Exd ... PL:

For EPL Ga/Gb or EPL Gb, the permissible temperature range can be taken from the following tables, depending on the variant and the temperature class:

Temperature class	Ambient temperature range	Medium temperature range
T6	-55 °C +50 °C	-55 °C +75 °C
T5	-55 °C +65 °C	-55 °C +90 °C
T4	-55 °C +85 °C	-55 °C +125 °C
Т3	-55 °C +85 °C	-55 °C +190 °C
T2	-55 °C +85 °C	-55 °C +285 °C
T1	-55 °C +85 °C	-55 °C +435 °C

For EPL Db applications, the permissible ambient temperature range depending on the permissible surface temperature can be taken from the following table:

Maximum surface temperature		Ambient temperature range
Dust layer ≤ 5 mm	With total immersion	Ambient temperature range
T ₅ X°C	TX°C	l a
$X^{\circ}C = T_a + 30 ^{\circ}C$	Observe EN 60079-14	-55 °C +85 °C

The equipment is suitable for dusts with an ignition temperature of more than 190 °C under a dust layer of 5 mm (glow temperature).

(16) Drawings and documents are listed in the ATEX Assessment Report No. 22 203 302211

Schedule to EU-Type Examination Certificate No. TÜV 99 ATEX 1496 X Issue 03

(17) Specific Conditions for Use:

- 1. The permissible temperature range depending on temperature classes resp. on the maximum surface temperature is to be taken from the operating instructions.
- 2. A reverse heat flow from the process, e.g. by heat dissipation from components of the system, beyond the permissible ambient temperature of the filling level sensor is not permissible. This can be avoided, for example, by suitable thermal insulation of these components or by mounting the pressure transmitter at a greater distance (cooling distance).
- 3. The medium tangent materials of the filling level sensor have to be resistant to the media.
- 4. For the uses in potentially explosive gas atmospheres and when using plastic floats, the filling level sensors have to be installed and used in such a way, that electrostatic charging from operation, maintenance and cleaning is excluded.
 For the uses in potentially explosive dust atmospheres and when using plastic floats process-related electrostatic charges, e.g. due to passing media have to be excluded.
- 5. When using titanium floats or the Sump Environmental Sensor, the ignition hazard caused by impact or friction has to be excluded.
- 6. For EPL Ga/Gb applications the whole device filling level type VISY-Stick ... resp. type TORRIX Ex has to be mounted in a way that allows an installation that results in a sufficiently tight joint (IP66 or IP67) or a flameproof joint (IEC 60079-1) in the direction of the less endangered area.
- 7. In case of hazards due to pendulum or swinging, the corresponding parts of the level sensor type VISY-Stick ... resp. type TORRIX Ex... have to be effectively secured against these hazards.
- 8. The cable glands for the filling level sensors type TORRIX Exd XT...; TORRIX Exd ...-A; TORRIX Exd ... Flex and TORRIX Exd ... PL have to be separately assessed and certified in accordance with EN 60079-0; EN 60079-1 and EN 60079-31. In the end-use application the degree of protection min. IP6X shall be maintained in accordance with EN 60079-0 and in compliance with EN 60529.
- 9. The flameproof joints at type TORRIX Exd... are not intended to be repaired.

(18) Essential Health and Safety Requirements:

No additional ones.

- End of EU-Type Examination Certificate -

P17-F-011 Rev. 02/11.21 Page 8/8

Instructions in accordance with directive 2014/34/EU

TÜV 99 ATEX 1496 X

Version: 02.2023

Filling Level Sensors type VISY Stick ... and type TORRIX Ex...

I Range of application

The filling level sensors are designed for continuous measurement of liquid levels. Floats are used to measure the liquid levels. These slide on a sensor tube. For interface or water detection, a second float can be mounted on the sensor tube. In addition, the density of the liquid can be determined via a density module. The temperature measuring chain VISY-Stick ... Temp ... is used to measure temperatures at different heights and does not use any floats.

The power supply for the devices VISY-Stick ... and the forwarding of the measured data to a superordinate evaluation system is provided by isolating amplifier VP-... or VPI or, in the case of the sensor VISY-Stick ... TLS, e.g. by the TLS-... console from Veeder-Root. If an RS-485 interface is used, the sensor VISY-Stick ... RS485 can be used.

The filling level sensors TORRIX Ex ... can be produced with different interfaces. These are, for example, interfaces "4 ... 20 mA" (TORRIX Ex ... and TORRIX Ex C...), "RS-485" (TORRIX Ex RS485...) or TAG (TORRIX Ex TAG...). The TORRIX Ex... XT... level sensors can be operated either on a 4 ... 20 mA or RS 485 interface. The filling level sensors TORRIX Ex SC... are connected to the isolating amplifier VP-... or VPI.

II Standards

The device is designed according to the following European standards

EN IEC 60079-0:2018	Equipment – General requirements
EN 60079-1:2014	Equipment protection by flameproof enclosures "d"
EN 60079-11:2012	Equipment protection by intrinsic safety "i"
EN 60079-26:2015	Equipment with Equipment Protection Level (EPL) Ga
EN 60079-31:2014	Equipment dust ignition protection by enclosure "t"

III Instructions for safe ...

III.a ... use

The approval applies to equipment types VISY-Stick ... and TORRIX Ex...

The devices are designed either as intrinsically safe equipment or as flameproof enclosures resp. protection by enclosures with an intrinsically safe part and are suitable for use in potentially explosive atmospheres. The "advanced" (TORRIX Ex...-A, VISY-Stick Advanced ...) and "flexible" filling level sensors (TORRIX Ex... Flex, VISY-Stick ... Flex ...) as well as types with plastic coating against very aggressive media (TORRIX Ex... PL) can be used for all gases of groups IIA and IIB. The temperature measuring chain VISY-Stick ... Temp ... and all other filling level sensors can be used for all gases of groups IIA, IIB and IIC. In addition, all devices can be used for dust groups IIIA, IIIB and IIIC.

With the level sensor in flameproof enclosure respectively with protection by enclosure (TORRIX Exd ...) there is the possibility of using a heater for the display when used in very low ambient temperatures.

To use a non-conductive plastic floats in potentially explosive areas with gases of group IIC the hazard of static charging must be prevented. Here a few conditions need to be observed:

- The use of the float in strongly flowing, non-conductive liquids is forbidden;
- There must be no agitator/mixer in the tank;
- Frictions on non-conductive components are to be avoided;
- The float must not be cleaned in a dry state.

The materials of the sensors that come into contact with the media must be resistant to these media.

III.b ... assembling and dismantling

The assembly and disassembly must solely be carried out with the power disconnected!

Prior to the installation, it may be necessary that the float/s or the density module is disassembled. During the assembly it must be ensured that the float/s or the module is/are mounted the right way on the sensor tube.

Only with the TORRIX Ex ... with screw terminals the opening of the sensor head is planned. Further disassembly may damage the filling level sensor and void its approval.

With the TORRIX Exd ... a certified cable gland must be installed in the flameproof enclosure according to the manufacturer's instructions. The covers of the connection compartment and of the display can be opened after switching off both circuits (sensor and heating) with a four-minute waiting time, whereby the M4 hexagon socket locking screw must first be loosened (screw into the enclosure). To close the cover, screw it back on completely and then secure it with the M4 screw (screw it out of the enclosure against the cover).

III.c ... installation

All wiring operations must solely be carried out with the power disconnected. Special rules and regulations, including EN 60079-14 and local installation regulations, must be observed.

If a device is supplied with screw-in unit, the thread of the screw-in unit must be fitted with a suitable sealing material, screwed into the existing sleeve and tightened. In case of a riser installation the plastic centring aid is plugged onto the sensor head. Then allow the sensor to slide into the riser tube until it stands firmly on the bottom. If the filling level sensor is supplied without process fitting, the installer is responsible for compliance with the Ex requirements.

General information (see also EN 60079-26, Clause 4.3):

If a device is installed into the boundary wall between zone 0 and zone 1, it is essential to ensure that a minimum protection of IP66 or IP67 is achieved after installation.

Through the process connection, there may be an opening in the boundary wall to the area requiring EPL Ga. There is then the risk of the release of flammable gas and the flame entrance.

A heat return flow from the process, e.g. by heat radiation, beyond the permissible ambient temperature is not permissible. This can be avoided, for example, by suitable thermal insulation or by mounting the sensor head of the sensor at a greater distance (cooling distance).

In case of hazards due to oscillation or swinging, the corresponding parts of the sensor must be effectively secured against these hazards.

Flexible filling level sensor (TORRIX Ex... Flex ..., VISY-Stick ... Flex ...)

This type can be produced with different sensor bases to serve for stabilizing the sensor. A base can be a magnetic base. The magnet is then encapsulated in an electricity conducting plastic and can therefore be used in potentially explosive areas.

If this version is manufactured without a fixture, it may only be used in non-flowing liquids or it must be ensured that it does not turn, e.g. by a protective tube or by a weight as a sensor foot.

LPG filling level sensor VISY-Stick ... LPG ...

The adjustable installation kit for LPG tanks was developed to allow the sensor to be installed and removed at any time without any additional work and without having to open the tank. The adjustable installation kit for LPG tanks consists of a jacket pipe with special LPG float made of BUNA and a ³/₄" NPT cutting ring fitting. In the case of installation with a cutting ring fitting, the position of the sensor can no longer be altered after the union nut has been tightened.

Environmental sensor VISY-Stick Sump ...

This environmental sensor can be fixed with the mounting kit.

When wiring the intrinsically safe sensor to the associated apparatus (preferably blue coloured cable), the approved inductance and capacitance of the associated apparatus must not be exceeded. The terminals of the sensor must be connected to the same terminals of the isolating amplifier.

For the filling level sensors with connection terminals, the terminal designation are "+" and "-" and additionally "A" and "B" for the type TORRIX Ex... XT... ("+" and "-" are added for the type TORRIX Exd ... for the terminal block "Heater"). For devices with M12 plug, the pin assignments are as follows:

Pin	TORRIX Ex SC VISY-Stick	TORRIX Ex C TORRIX Ex TAG VISY-Stick TLS	TORRIX Ex RS485 VISY-Stick RS485	M12 cable (female)
1	+	+	+	
2	A		A (+)	Pin3 Pin4
3	-	-	-	
4	В		B (-)	Pin2 Pin1

Table 1: Pin assignment of the sensors

The sensors must be integrated into the potential equalization of the hazardous area. A PA connecting terminal on the sensor head is available for integration of the devices into the potential equalization.

General information (see also EN 60079-14:2013, clause 6.4.1):

Exposed conductive parts need not be separately connected to the equipotential bonding system if they are firmly secured to and are in conductive contact with structural parts or piping which are connected to the equipotential bonding system.

III.d ... adjustment

For the operation the sensors, no Ex-relevant adjustments are necessary.

III.e ... putting into service

Before putting into service, all devices must be checked for correct connection and installation. The electrical supply, including the connected devices, must be checked. For the level sensors type TORRIX Exd ..., the cable entry and the covers must be checked for correct installation.

III.f ... maintenance (servicing and emergency repair)

The apparatus is generally maintenance-free. In the case of a defect, this must be returned to the manufacturer FAFNIR or one of its representatives.

For equipment that is completely intrinsically safe, there is compliance in the dielectric strength test between the intrinsically safe circuit and the chassis of the equipment with a voltage of 500 V_{AC} in accordance with EN 60079-11, Clause 6.3.13. For level sensors type TORRIX Exd ... there is no compliance.

With the type TORRIX Ex... XTS... the display may be replaced. To do this, the cover of the display must first be removed (see section III.b). By pushing in the flaps of the display, it can be levered out bit by bit. Particularly with the TORRIX Exd ... version, care must be taken during this procedure not to damage the enclosure and especially the thread for the cover. The connections (plugs and sockets) on the back of the indicator must be disconnected. Now the new unit can be connected. The number of poles and the polarity reversal protection of the connectors determine the correct connection. After the electrical connection, the unit is placed in the grooves with the snap-in mechanism (the orientation can be changed later, as the unit can be rotated in the enclosure. By pressing the flaps in again, the display can be lowered into the enclosure until it clicks into place. After aligning the new indicator, refit the cover (see section III.b).

Warning: The type VISY-Stick Sump ... and floats made of non-conductive plastic must only be cleaned with a

damp cloth, to minimize the risk of electrostatic charging.

Warning: The TORRIX Exd ... version may only be opened without voltage.

IV Equipment marking

1 Manufacturer: FAFNIR GmbH, 22525 Hamburg

2 Type designation: TORRIX Ex ... / VISY-Stick ...

3 Certificate number: TÜV 99 ATEX 1496 X

4 Ex marking:

TORRIX Ex ... / TORRIX Ex C... / TORRIX Ex RS485... / TORRIX Ex SC... / TORRIX Ex TAG... / TORRIX Ex XT... / VISY-Stick RS485... / VISY-Stick (Flex) Temp / VISY-Stick (Flex) Temp RS485

II 1 G Ex ia IIC T6...T1 Ga

II 1/2 G Ex ia IIC T6...T1 Ga/Gb

II 2 G Ex ia IIC T6...T1 Gb

II 2 D Ex ia IIC TX °C Db

TORRIX Ex ...-A / TORRIX Ex ... Flex / TORRIX Ex ... PL /

TORRIX Ex C...-A / TORRIX Ex C... Flex / TORRIX Ex C... PL /

TORRIX Ex RS485...-A / TORRIX Ex RS485... Flex / TORRIX Ex RS485... PL /

TORRIX Ex SC...-A / TORRIX Ex SC... Flex / TORRIX Ex SC... PL /

TORRIX Ex TAG...-A / TORRIX Ex TAG... Flex / TORRIX Ex TAG... PL /

TORRIX Ex XT...-A / TORRIX Ex XT... Flex / TORRIX Ex XT... PL /

VISY-Stick Advanced ... / VISY-Stick ... Flex ... / VISY-Stick Advanced ... RS485 / VISY-Stick ... Flex ... RS485

II 1 G Ex ia IIB T6...T1 Ga

II 1/2 G Ex ia IIB T6...T1 Ga/Gb

II 2 G Ex ia IIB T6...T1 Gb

II 2 D Ex ia IIIC TX °C Db

TORRIX Exd ...

II 1/2 G Ex ia/db IIC T6...T1 Ga/Gb
II 2 G Ex db ia IIC T6...T1 Gb
II 2 D Ex ia tb IIIC TX °C Db

TORRIX Exd ...-A / TORRIX Exd ... Flex / TORRIX Exd ... PL

II 1/2 G Ex ia/db IIB T6...T1 Ga/Gb
II 2 G Ex db ia IIB T6...T1 Gb
II 2 D Ex ia tb IIIC TX °C Db

VISY-Stick ... TLS / VISY-Stick (Flex) Temp TLS

II 1 G Ex ia IIC T4...T1 Ga

II 1/2 G Ex ia IIC T4...T1 Ga/Gb

II 2 G Ex ia IIC T4...T1 Gb

II 2 D Ex ia IIC TX °C Db

VISY-Stick Advanced ... TLS / VISY-Stick ... Flex ... TLS

II 1 G Ex ia IIB T4...T1 Ga

II 1/2 G Ex ia IIB T4...T1 Ga/Gb

II 2 G Ex ia IIB T4...T1 Gb

II 2 D Ex ia IIIC TX °C Db

5 Warning marking: *WARNING – Potential electrostatic charging hazard – See instructions

**WARNING – AFTER DE-ENERGIZING, DELAY 4 MINUTES BEFORE OPENING

6 CE marking: **€** 0044

7 Ex d thread: **Cable entry, e.g. M20 × 1.5 8 Technical data: See instructions for technical data

* Marking only applies to sensors type VISY-Stick Sump ...

** Marking only applies to sensors type TORRIX Exd ...

Page 4/7

V Technical data

The following electrical input values apply to the filling level sensors:

Electrical variable	TORRIX Ex SC VISY-Stick	TORRIX Ex TORRIX Ex C TORRIX Ex RS485 TORRIX Ex TAG TORRIX Ex XT VISY-Stick RS485	VISY-Stick TLS
U _i ≤	15 V	30 V	13 V
l _i ≤	60 mA	100 mA / 200 mA*	200 mA
P _i ≤	100 mW	1 W	625 mW
C _i <	10 nF	10 nF	20 nF
L _i <	100 μH	20 μΗ	410 μH

Table 2: Electrical input data of intrinsic safe filling level sensors

The voltage for the type TORRIX Exd ... is from 12 V to 50 V (U_m = 253 V). The current is from 4 mA to 20 mA (Error mode: 3.6 mA / 21.5 mA) respectively 10 mA when using RS-485. The supply voltage of the heater is 24 V \pm 10 % with a current of 160 mA.

When using the equipment in potentially explosive atmospheres please consult table 3 to table 6 for the maximum temperatures depending on the equipment protection level and temperature class resp. surface temperature.

TORRIX Ex SC... / VISY-Stick ...

For use in EPL Ga, EPL Ga/Gb and EPL Gb				
Temperature class T _a		T _F		
Т6	-40 °C +50 °C	-40 °C +75 °C		
T5	-40 °C +65 °C	-40 °C +90 °C		
T4		-40 °C +125 °C		
Т3	40.00 .00.00	-40 °C +190 °C		
T2	-40 °C +85 °C	-40 °C +285 °C		
T1		-40 °C +435 °C		
For use in EPL Db				
Maximum surfa	Ambient temperature T			
dust layer ≤ 5 mm	immersed in dust	Ambient temperature T _a		
X°C = T _a + 30 °C	X°C = 135 °C	-40 °C +85 °C		

Table 3: Service temperatures of the filling level sensors in basic version (without interface board)

The equipment is suitable for dusts whose ignition temperature under a dust layer of 5 mm is greater than 190 °C (glow temperature).

FAFNIR GmbH • Schnackenburgallee 149 c • 22525 Hamburg • Tel.: +49 / (0)40 / 39 82 07-0 • www.fafnir.de • info@fafnir.de

 $^{^{\}star}$ The permissible input current $I_{\rm i}$ depends on the ambient temperature $T_{\rm a}$ Page 5/7

TORRIX Ex ... / TORRIX Ex C... / TORRIX Ex RS485... / TORRIX Ex TAG... / TORRIX Ex XT... / VISY-Stick ... RS485

For use in EPL Ga, EPL Ga/Gb and EPL Gb					
Temperature class	Ta	T _F			
T6	I _i ≤ 100 mA: -40 °C +40 °C I _i ≤ 200 mA: -40 °C +25 °C	-40 °C +75 °C			
T5	I _i ≤ 100 mA: -40 °C +55 °C I _i ≤ 200 mA: -40 °C +40 °C	-40 °C +90 °C			
T4		-40 °C +125 °C			
Т3	l _i ≤ 100 mA: -40 °C +85 °C	-40 °C +190 °C			
T2	l _i ≤ 200 mA: -40 °C +70 °C	-40 °C +285 °C			
T1		-40 °C +435 °C			
For use in EPL Db					
Maximum surfa	Ambient temperature T				
dust layer ≤ 5 mm	immersed in dust	Ambient temperature T _a			
$I_i \le 100 \text{ mA: } X^{\circ}C = T_a + 40 ^{\circ}C$	Caraidan FN 60070 14	-40 °C +85 °C			
I _i ≤ 200 mA: X°C = T _a + 55 °C	Consider EN 60079-14	-40 °C +70 °C			

Table 4: Service temperatures of the filling level sensors with 4 ... 20 mA, RS-485 or TAG interface

The equipment is suitable for dusts whose ignition temperature under a dust layer of 5 mm is greater than 200 °C (glow temperature).

VISY-Stick TLS					
For use in EPL Ga, EPL Ga/Gb and EPL Gb					
Temperature class	Ta	T _F			
T4	-40 °C +75 °C	-40 °C +125 °C			
T3		-40 °C +190 °C			
T2	-40 °C +85 °C	-40 °C +285 °C			
T1		-40 °C +435 °C			
For use in EPL Db					
Maximum surfac	e temperature	A Librard document of T			
dust layer ≤ 5 mm	immersed in dust	Ambient temperature T _a			
X°C = 135 °C	X°C = 135 °C	-40 °C +77 °C			
X°C = T _a + 110 °C	Consider EN 60079-14	-40 °C +85 °C			

Table 5: Service temperatures of the filling level sensors with TLS interface

The equipment is suitable for dusts whose ignition temperature under a dust layer of 5 mm is greater than 270 °C (glow temperature).

-55 °C ... +85 °C

TORRIX Exd ...

For use in EPL Ga/Gb and EPL Gb					
Temperature class	Ta	T _F			
Т6	-55 °C +50 °C	-55 °C +75 °C			
T5	-55 °C +65 °C	-55 °C +90 °C			
T4		-55 °C +125 °C			
Т3	-55 °C +85 °C	-55 °C +190 °C			
T2		-55 °C +285 °C			
T1		-55 °C +435 °C			
For use in EPL Db					
Maximum surface temperature					
dust laver < 5 mm	immersed in dust	Ambient temperature T _a			

Consider EN 60079-14

Table 6: Service temperatures of the Ex d+t+i version

The equipment is suitable for dusts whose ignition temperature under a dust layer of 5 mm is greater than 190 °C (glow temperature).

It must be ensured through appropriate measures that the temperature (T_a) for the respective temperature class is not exceeded at any point on the sensor head.

The filling level sensors achieve a degree of protection:

IP68

Protection rating

 $X^{\circ}C = T_a + 30 \, ^{\circ}C$

VI Special conditions of use

- 1. When using plastic floats, the level sensors must be installed and used in such a way that electrostatic charges caused by operation, maintenance and cleaning are excluded.
 - For use in dust explosion hazardous areas, process-related electrostatic charges, e.g. due to media flowing past, must be excluded.
- 2. When using Titanium Floats or Sump Environmental Sensors, the risk of ignition due to impact or friction shall be avoided.
- 3. The flameproof joints at type TORRIX Exd ... are not intended to be repaired.

ZERTIFIKAT CERTIFICATE

Hiermit wird bescheinigt, dass das unten beschriebene Produkt der Firma This certifies that the product mentioned below from company

FAFNIR GmbH Schnackenburgallee 149 c 22525 Hamburg Deutschland

die Anforderungen der folgenden Prüfunterlage(n) erfüllt. fulfills the requirements of the following test regulations.

Geprüft nach: EN 61508:2010

Tested in accordance with:

Zertifizierungsprogramm: P14.1VA001

Certification program:

Beschreibung des Produktes: Magnetostriktiver Füllstandsensor (Details s. Anlage 1) Magnetostrictive Level Sensor

(Details s. Anlage 1)
Description of product:
(Details see Annex 1)

Typenbezeichnung: TORRIX, TORRIX XTS, VISY-Stick

Type Designation:

Bemerkung: Siehe Anlage 1
Remark: See Annex 1

Dieses Zertifikat bescheinigt das Ergebnis der Prüfung an dem vorgestellten Prüfgegenstand. Eine allgemein gültige Aussage über die Qualität der Produkte aus der laufenden Fertigung kann hieraus nicht abgeleitet werden.

This certifies the result of the examination of the product sample submitted by the manufacturer. A general statement concerning the quality of the products from the series manufacture cannot be derived there from.

Registrier-Nr. / Registered No. 44 799 13752002 Prüfbericht Nr. / Test Report No. 3535 6735 Aktenzeichen / File reference 8003062683

Gültigkeit / Validity von / from 2025-01-14 bis / until 2030-01-13

Zertifizierungsstelle der TÜV NORD CERT GmbH Essen, 2025-01-14

TÜV NORD CERT GmbH

Am TÜV 1

45307 Essen

www.tuev-nord-cert.de

technology@tuev-nord.de

Hinweise zum TÜV NORD- Zertifikat

Hints to the TÜV NORD - Certificate

Dieses TÜV NORD - Zertifikat ailt nur für die umseitia This TÜV NORD - certificate only applies to the firm kann nur von der Zertifizierungsstelle auf Dritte transferred to third parties by the certification body. übertragen werden.

bezeichnete Firma und das angegebene Produkt. Es stated overleaf and the specified product. It may only be

Notwendige Bedienungs- und Montageanweisungen Each product must be accompanied by the instructions müssen jedem Produkt beigefügt werden.

which are necessary for its operation and installation.

den serienmäßig in den Verkehr gebrachten Produkten the product launched on the market as a standard. festgestellt werden kann.

Jedes Produkt muss deutlich einen Hinweis auf den Each product must bear a distinct indication of the Hersteller oder Importeur und eine Typenbezeichnung manufacturer or importer and a type designation so that tragen, damit die Identität des geprüften Baumusters mit the identity of the tested sample maybe determined with

die Fertigung der Produkte laufend auf Übereinstimmung regularly supervise the manufacturing of products for mit den Prüfbestimmungen zu überwachen und insbesondere die in den Prüfbestimmungen festgelegten properly carry out the checks which are stated in the Zertifizierungsstelle oder von der Kontrollprüfungen ordnungsgemäß durchzuführen.

Der Inhaber des TÜV NORD - Zertifikates ist verpflichtet, The bearer of the TÜV NORD - Certificate undertakes to compliance with the test specifications and in particular geforderten specifications or required by the test laboratory.

Bei Änderungen am geprüften Produkt ist die In case of modifications of the tested product the Zertifizierungsstelle umgehend zu verständigen.

certification body must be informed immediately.

Zertifizierungsstelle zurückzugeben. werden kann oder ob eine erneute Zertifizierung certification is required. erforderlich ist.

Bei Änderungen und bei befristeten Zertifikaten ist das In case of modifications and expiration of validity the Zertifikat nach Ablauf der Gültigkeit urschriftlich an die original certificate must be returned to the certification Die body immediately. The certification body decides if the Zertifizierungsstelle entscheidet, ob das Zertifikat ergänzt certificate can be supplemented or whether a new

Für das TÜV NORD - Zertifikat gelten außer den In addition to the conditions stated above, all other vorgenannten Bedingungen auch alle übrigen Bestimmungen des allgemeinen Vertrages. Es hat solange Gültigkeit, wie die Regeln der Technik gelten, die der Prüfung zu Grunde gelegt worden sind, sofern es unless revoked previously pursuant to the provisions of nicht auf Grund der Bedingungen des allgemeinen the General Agreement. Vertrages früher zurückgezogen wird.

provisions of the General Agreement are applicable to the TÜV NORD - Certificate. It will be valid as long as the rules of technology on which the test was based are valid,

ungültig erklärt wird.

Dieses TÜV NORD - Zertifikat verliert seine Gültigkeit This TÜV NORD - Certificate will become invalid and muss unverzüglich der Zertifizierungsstelle shall be returned to the certification body immediately in zurückgegeben werden, falls es ungültig wird oder für the event that it shall expire without delay when it has expired or revoked.

ANLAGE ANNEX

Anlage 1, Seite 1 von 2 Annex 1, page 1 of 2

zum Zertifikat Registrier-Nr. / to Certificate Registration No. 44 799 13752002

Produktbeschreibung:

Magnetostriktiver Füllstandsensor

Product description:

Magnetostrictive Level Sensor

Typbezeichnung: *Type designation:*

TORRIX, TORRIX XTS, VISY-Stick

Technische Daten:

Technical data:

	TORRIX SC / Visy-Stick	TORRIX Ex / VISY-Stick RS485	TORRIX	VISY-Stick TLS	TORRIX Ex XTS	TORRIX XTS (H)
Nennspannung: Nominal voltage:	+6 V DC +15 V DC	+8 V DC +30 V DC	+8 V DC +50 V DC	+8 V DC +13 V DC	+12 V DC +30 V DC	+12 V DC +50 V DC
Umgebungstemperatur: Ambient temperature:	-40 °C +85 °C +85 °C				-55 °C +85 °C	
Schutzart: Degree of Protection:	IP68					

Sicherheitsfunktion:

Safety function:

	EN 61508 – Continuous Mode						
	TORRIX	TORRIX C	TORRIX HART	TORRIX HART C	TORRIX RS485 / VISY-Stick RS485		
SIL		2					
HFT		0					
PFH [1/h]	1,12 x 10 ⁻⁷	7,65 x 10 ⁻⁸	1,39 x 10 ⁻⁷	9,52 x 10 ⁻⁸	5,43 x 10 ⁻⁸		
	TORRIX SC / VISY-Stick	TORRIX TAG	VISY-Stick TLS	TORRIX Exd XTS	TORRIX XTS / TORRIX Ex XTS		
SIL			2				
HFT	0						
PFH [1/h]	4,49 x 10 ⁻⁸	5,75 x 10 ⁻⁸	5,86 x 10 ⁻⁸	1,18 x 10 ⁻⁷	1,14 x 10 ⁻⁷		

TÜV NORD CERT GmbH

Am TÜV 1

45307 Essen

www.tuev-nord-cert.de

Essen, 2025-01-14

technology@tuev-nord.de

1

TUVNORD

ANLAGE ANNEX

Anlage 1, Seite 2 von 2 Annex 1, page 2 of 2

zum Zertifikat Registrier-Nr. / to Certificate Registration No. 44 799 13752002

Hinweise zur sicheren Verwendung: *Notes for safe use:*

- 1. Für eine vollständige Beurteilung einer Sicherheitsfunktion müssen alle Anforderungen gemäß EN 61508 auf die vollständige Sicherheitsfunktion, in der das Produkt eingesetzt wird, angewendet werden. For a complete functional safety assessment of a safety function, all requirements of EN 61508 have to be applied to the complete safety function in which the product is used.
- Die Gültigkeit der Beurteilung ist nur für die im Bericht Nr. 3535 6735 spezifizierte Version gegeben.
 The validity of the assessment is only given for the version as specified in technical report no. 3535 6735.
- 3. Allen im Sicherheitshandbuch des Herstellers angegebenen Sicherheitshinweisen ist zum Erreichen des angegebenen Sicherheitsintegritätslevels Folge zu leisten. All safety advice given in safety manual must be followed to achieve the specified safety integrity.

Zertifizierungsstelle der TÜV NORD CERT GmbH

Essen, 2025-01-14

TÜV NORD CERT GmbH Am TÜV 1 45307 Essen www.tuev-nord-cert.de technology@tuev-nord.de

Safety manual in accordance with series of standards EN 61508 Level sensor type TORRIX ... and VISY-Stick ... Registration No. 44 799 13752002

Safety manual in accordance with series of standards EN 61508

Level sensor type TORRIX ... and type VISY-Stick ...

I Range of application

The level sensors are suitable for areas in which a safety-related subsystem according to EN 61508 with SIL 2 is mandatory.

II Standards

The level sensors are designed in accordance with the following standards

EN 61508:2010, all parts Functional safety of electrical/electronic/programmable electronic safety-related systems

III Instructions for safe ...

III.a ... use

This safety manual applies to all level sensors from hardware version 4 and from firmware version V4.9 (sensors) or V1.2.0 (XTS) upwards. The version numbers can be read with differences:

TORRIX ... HART...: The version numbers can be read out using the configuration program FAFNIR HART-Setup.

TORRIX ... RS485...: The firmware version can be read out using the MODBUS ASCII protocol.

TORRIX ... SC... and VISY-Stick ...: The version numbers can be read out using the configuration program VISY-Setup or the FAFNIR protocol Universal Device Protocol (UDP). The respective technical documentation is to be consulted for the use of the named options.

TORRIX ... TAG...: The firmware version is issued at regular intervals in the identification message. The field name is "Firmware Version" and has a length of two bytes.

TORRIX ... XTS...: The version numbers can be called up in the menu and can be shown on the integrated display.

In principle, the level sensor indicates the correct fill level (plausibility check) and / or, in the case of a detected error, an error value (safe state), which corresponds to a mode of operation with a continuous requirement. The safe state is reached within ten seconds.

If there is an error in the communication, the higher-level system must classify this as a malfunction. The output of the safety function is ensured differently by the different level sensors.

It must be ensured that there are no strong magnetic fields in the area of the probe tube. In addition, the safe use with adhering liquids is not guaranteed.

Page 1/7 Edition: 2024-08

Type	Approval	Electrical design	Construc- tion	Measuring accuracy	Mechanical design	Process Temperature HHT HT LLT LT NT	Maximum temperature High temperature (HT) Minimum temperature Low temperature Normal temperature	-40 °C +450 °C -40 °C +250 °C -200 ° C +80 °C -65 °C +125 °C -40 ° C (+85) +125 °C
					n nB 90B B Flex HY PL SP	n = sensor tube n = sensor tube Sensor tube be Sensor tube no Flexible sensor Version for use Plastic coating	be with 12 mm diameter e Ø, e.g. 6 (mm) Ø; Sensor tube not centere nt 90° in front of the sensor t centered on the sensor tube (Rigit parts: F = 20 in the hygiene sector against very aggressive me.g. for sampling	or head and Bypass head (Bypass) 00/300 mm; T = 500 mm)
				-5T -A5T -A	Increased me	nperature sensor: easurement accul	racy and five temperature	sensors
			l VT	Standard structure of a	1.4301 (304)	resistant for por	table tanks	
		C HART HART C RS485 SC TAG XT XTS XTSH	4 20 mA 4 20 mA 4 20 mA RS-485 inte Serial comm TAG interfa RS-485 and RS-485 and	interface with interface with interface with erface munication (foace; signal trand 4 20 mA ir 14 20 mA ir	r connection to smission based aterface with H aterface with H	tton ol and internal se ol and without se o isolating ampli d on EN 14116 ART protocol an ART protocol an	etting button ifier VP or VPI) d setting button (Ex-d ho d setting button and digit	
	Ex Exd		proval intrin	sic safety "ia" proof enclosu	re "d" or prote	ction by housing	g "t" and intrinsic safety "ia	a" for " XT"
TORRIX	RIX Magnetostrictive level sensor (from version 5) with terminals or connection plug							

Type code III.a1: Level sensor TORRIX ...

Page 2/7 Edition: 2024-08

System	Туре	VISY-Stick Sump (only)	Accuracy & sensor tube	Usage	Interface	
					RS485 TLS	For connection to isolating amplifier VP or VPI For connection to an RS-485 interface For connection to a TLS (Veeder-Root)
				Biodiesel E15 Ethanol LPG N	Standard level se Level sensor; Biod Level sensor; Ethat Level sensor; Ethat Level sensor; LPG Level sensor; AdE	diesel anol admixture up to 15 % anol
			Advanced Flex	Standard acc Higher accur Flexible senso	,	nsor tube
		Dispenser Manhole	•		ubtypes only "inte btypes only "inter	
	Stick Stick Interstitial Stick Sump	Environmental	ensor for moni	toring interme	diate chambers of c	sors in the sensor tube double-walled tanks (possible subtypes only "interface") tiation of liquids (product / water)
VISY-	- Volume Information System					

Type code III.a2: Level sensor VISY-Stick ...

III.b ... assembling and dismantling

For level sensors with connection board, only the cover of the connection housing may be removed for electrical installation and - by means of push buttons - for adjusting the level sensor. After installation, the connection housing must be closed again.

Also, the floats may be removed from the probe tube. When mounting the floats, pay attention to the correct orientation.

III.c ... installation

To integrate the devices in the equipotential bonding, a PA terminal is provided on the sensor head. For functional safety, it is relevant that the probes are integrated in the equipotential bonding. For the level sensors with screw terminals, the terminal designation is "+" and "-" as well as "A" and "B" for the type TORRIX ... XT... (additional "+" and "-" on the terminal block for the heater). For level sensors with M12 male connectors, the pin assignments are as follows:

Pin	TORRIX SC VISY-Stick	TORRIX C TORRIX TAG VISY-Stick TLS	TORRIX RS485 VISY-Stick RS485	M12 Cable (Female)
1	+	+	+	
2	A		A (+)	Pin3 Pin4
3	-	-	-	
4	В		B (-)	Pin2 Pin1

Table III.c: Terminal assignment of the sensors

Page 3/7 Edition: 2024-08

Safety manual in accordance with series of standards EN 61508 Level sensor type TORRIX ... and VISY-Stick ... Registration No. 44 799 13752002

III.d ... adjustment

No SIL-relevant adjustments are required for operation of the sensors.

III.e ... putting into service

Before putting into service, all devices must be checked of right installation and connection. The electrical supply, as well of connected devices, must be checked.

III.f ... maintenance (servicing and emergency repair)

Generally, the level sensor is maintenance-free. In the event of a defect, it must be sent back to the manufacturer or one of its representations.

If an error occurs, e.g. no float on the probe tube, the corresponding diagnostic error is issued. If the error is corrected during active operation, the sensor leaves the error mode.

Level sensors with 4 ... 20 mA interface

In the event of a fault, the fault current flows (3.6 mA or 21.5 mA, whichever is set). If the fault current of 21.5 mA can not flow, e.g. in case of low supply, the fault current is automatically set to 3.6 mA.

If the level sensor is equipped with buttons for configuration, the safe state can also be tested by using these buttons. For this press one or both buttons for a long time and the following sequence occurs:

- After three seconds, the sensor changes into configuration mode either for the measuring range (one button pressed) with a current consumption of 12 mA or for the fault current (both buttons pressed) with a current consumption of 16 mA. This is indicated by the LED flashing slowly (1.5 Hz).
- After ten seconds of pressing, the sensor changes into the safe state. If 21.5 mA flows, the LED flashes quickly (6 Hz), and at 3.6 mA the LED is off.
- Releasing the button returns to the configuration mode. The configuration mode is exited no later than 20 seconds after the last pressing and when functioning correctly, the current position of the float is displayed.

Level sensors with HART protocol

The second data byte of the level sensor response contains the device status. The flag "Device malfunction" (0x80, bit 7) signals a device error. If the "More Status Available" flag (0x10, bit 4) is also set, then device-specific status bits (byte 0) can be queried:

Bit	Fault	Description			
0	HART parameters	HART parameters have been changed illegally			
1	Sensor parameters	Sensor parameters have been changed illegally			
2	Measurement	No measurement possible			
3	Error counter	Too many errors during the measurement			
4	Undervoltage	Supply voltage is too low			

Table III.f1: Device-specific status bits in the HART protocol

Page 4/7 Edition: 2024-08

Level sensors with DDA protocol

In the event of an error, the error code "E102" is output in the fill level data field.

Level sensors with H, Modbus, UC and UDP protocol

In the event of an error, the status code 1 is output.

Level sensors with LC protocol

In the event of an error, the status bit (bit 7) in the status byte is set to 1.

Level sensors with TAG protocol

In the event of an error, the status bit (bit 23) is set to 1 and the fill level indicates the cause of the error:

Fill level (only bits 22 0)	Status information		
0x000000	General problem with the sensor		
0x000001	RAM error		
0x000002	Parameter error		
0x000003	The float is too close to the end		
0x000005	The float is upside down		
0x000007	Switched ON (power up) or reset (Reset)		
0x7FFFFF	Level overflow		

Table III.f2: Device-specific status bits in the TAG protocol

Level sensors with TLS interface

For each measurement, the probes are switched on for approximately 500 ms. If the probe is unable to perform regular measurements, the measurement is marked as invalid by falsification of the parity bit.

Page 5/7 Edition: 2024-08

Safety manual in accordance with series of standards EN 61508 Level sensor type TORRIX ... and VISY-Stick ... Registration No. 44 799 13752002

IV Technical Data

Electrical connection and communication

TORRIX ..., TORRIX ... C...

2-wire connection (4 ... 20 mA interface; 3.8 mA to 20.5 mA current consumption for level display;

3.6 mA or 21.5 mA current consumption in the event of an error; optional HART protocol)

TORRIX ... RS485..., VISY-Stick ... RS485

4-wire connection (RS-485 signals and power supply; MODBUS ASCII, FDA or FAFNIR-UD protocol)

TORRIX ... SC..., VISY-Stick ...

4-wire connection (TTL signals and power supply; FAFNIR protocol)

TORRIX ... TAG...

2-wire connection (signal transmission based on EN 14116)

TORRIX ... XTS...

2-wire connection (4 ... 20 mA interface; 3.8 mA to 20.5 mA current consumption for level display;

3.6 mA or 21.5 mA current consumption in the event of an error; optional HART protocol) or 4-wire connection (RS-485 signals and power supply; MODBUS ASCII, FDA or FAFNIR-UD protocol) as well as 2-wire connection for the optional heating

VISY Stick ... TLS

2-wire connection (supply and communication via a TLS console)

Power supply

TORRIX SC / VISY Stick	6 VDC 15 VDC
TORRIX Ex / VISY Stick RS485	8 VDC 30 VDC
TORRIX (not Ex)	8 VDC 50 VDC
TORRIX Ex XTS	12 VDC 30 VDC
TORRIX XTS(H)	12 VDC 50 VDC (heating: 24 VDC ± 10 %)
VISY Stick TLS	8 VDC 13 VDC

Temperatures

Ambient temperature (sensor head)

TORRIX & VISY Stick	-40 °C +85 °C
TORRIX XTS	-20 °C +85 °C
TORRIX XTSH	-55 °C +85 °C

Process temperature (sensor tube)

Standard	-40 °C +85 °C
Normal (NT)	-40 °C +125 °C
High (HT)	-40 °C +250 °C
Highest (HHT)	-40 °C +450 °C
Low (LT)	-65 °C +125 °C
Lowest (LLT)	-200 °C +85 °C

Protection class through housing

Stainless steel housing IP68 (IPX8: 30 days at 2 m depth)

Page 6/7 Edition: 2024-08

Safety related codes

	Parameter	Value				
Safety Integrity Level		SIL 2				
Hardware fault tol	Hardware fault tolerance		HFT = 0			
Security related su	bsystem	Туре В				
Failure rate [h ⁻¹]		λ_{S}	$\lambda_{ extsf{DD}}$	$\lambda_{ extsf{DU}}$		
	TORRIX	5,94E-07	5,83E-07	1,12E-07		
	TORRIX C	3,76E-07	4,00E-07	7,65E-08		
	TORRIX HART	7,08E-07	7,05E-07	1,39E-07		
	TORRIX HART C	4,74E-07	5,13E-07	9,52E-08		
	TORRIX RS485 / VISY-Stick RS485	2,82E-07	3,40E-07	5,43E-08		
	TORRIX SC / VISY-Stick	1,95E-07	2,54E-07	4,49E-08		
	TORRIX TAG	3,28E-07	3,61E-07	5,75E-08		
	TORRIX XTS, TORRIX Ex XTS	4,41E-07	6,69E-07	1,14E-07		
	TORRIX Exd XTS	4,95E-07	7,03E-07	1,18E-07		
	VISY-Stick TLS	2,68E-07	3,79E-07	5,86E-08		
Mean frequency of dangerous failure per hour, PFH [h-1]		See failure rate λ_{DU}				
Mean Time to Recovery		MTTR = 8 h				
Interval of the retest		$T_1 = 1$ year				
Architecture		1001				

Table IV.b: Safety related codes

V Additional requirements for software elements

There are no requirements for software elements.

Page 7/7 Edition: 2024-08

3/6/25, 3:49 PM about:blank

Government of India Ministry of Commerce & Industry Petroleum & Explosives Safety Organisation (PESO) 5th Floor, A-Block, CGO Complex, Seminary Hills, Nagpur - 440006

E-mail: explosives@explosives.gov.in

Dated: 06/03/2025

Phone/Fax No: 0712 -2510248, Fax-2510577

Approval No: A/P/HQ/TN/104/6656 (P620076)

To,

M/s. FAFNIR GmbH,

Schnackenburgallee 149 c 22525 Hamburg Germany,

GERMANY

Sub: Approval of Filling Level Sensors Type VISY-Stick ..., TORRIX Ex..., TORRIX Exd ..., under Petroleum Rules 2002. under Petroleum Rules 2002- Regarding.

Sir(s),

Please refer to your letter No. OIN1932700 dated 27/02/2025 on the subject.

The following Ex electrical equipment(s) manufactured by you according to EN 60079-1: 2014, EN 60079-11: 2012, EN 60079-26: 2015, EN IEC 60079-0: 2018 + AC2020, standards and covered under TUV NORD Test reports mentioned below is/are approved for use in **Zone 0** of Gas IIC hazardous areas coming under the Petroleum Rules, 2002 administered by this Organization.

Sr.	Description	Safety Protection	Equipment reference Number	Test Agency			Drowing
No				Name	Certificate No.	Certificate Date	Drawing no
1	Filling Level Sensors,Type TORRIX Ex	Ex ia IIC T6T1 Ga	P620076/1	TUV NORD	TUV 99 ATEX 1496 X Issue 03	04/04/2023	
2	Filling Level Sensors, Type VISY-Stick	Ex ia IIC T6T1 Ga	P620076/2	TUV NORD	TUV 99 ATEX 1496 X Issue 03	04/04/2023	
3	Filling Level Sensors,Type TORRIX Exd XT	Ex db ia IIC T6T1 Gb	P620076/3	TUV NORD	TUV 99 ATEX 1496 X Issue 03	04/04/2023	

This Approval is granted subject to observance of the following conditions:-

- 1)The design and construction of the equipment shall be strictly in accordance with description, condition and drawings as mentioned in the TUV NORD Test Reports referred to above.
- 2)The equipment shall be used only with approved type of accessories and associated apparatus.
- 3)Each equipment shall be marked either by raised lettering cast integrally or by plate attached permanently to the main structure to indicate conspicuously:-
 - (a) Name of the manufacturer
 - (b) Name and number by which the equipment is identified.
 - (c) Number & date of the test report of the TUV NORD applicable to the equipment.
 - (d) Equipment reference number of this letter by which use of apparatus is approved.
 - (e) Protection level.

about:blank 1/2

3/6/25, 3:49 PM about:blank

- 4) A certificate to the effect that the equipment has been manufactured strictly in accordance with the drawing referred to in the TUV NORD Test report and is identical with the one tested and certified at TUV NORD shall be furnished with each equipment.
- 5) The customer shall be supplied with a copy of this letter, an extract of the conditions and maintenence schedule, if any, recommended by TUV NORD in their test reports and copy of instructions booklet detailing operation & maintenance of the equipment so as to maintain its Flame Proof characterestics.
- 6) The After sales service and maintanance of subject equipment shall be looked after by your representative GILBARCO VEEDER ROOT INDIA PRIVATE LIMITED, PDP Manufacturing Facility, SF No. 628/2 & 627/2, W4 Coimbatore Campus, Eachanari, Chettipalayam Road, Malumichampatti

Conditions of the Approval:-

- 1. Filling Level Sensors, Type TORRIX Exd XT shall be installed in Zone 1 area.
- 2. Validity of this approval shall be subject to the validity of PQN of the manufacturer.
- 3. The specific conditions of use as mentioned in EU type test report No.TUV 99 ATEX 1496 X Issue 03, dated 4/4/2023 shall be communicated to the end user and shall be strictly followed.

This approval also covers the permissible variations as approved under the TUV NORD test reports referred above. This approval is liable to be cancelled if any of the conditions of the approval is violated or not complied with . The approval may also be amended or withdrawn at any time, if considered necessary in the interest of safety.

The field performance report from actual users/your customers of the subject equipment may please be collected and furnished to this office for verification and record on annual basis.

The Approval is Valid upto 31/12/2029

Yours faithfully,

(SAUMITRA RAYCHAUDHURI)
Dy. Controller of Explosives
For Chief Controller of Explosives
Nagpur

Copy to

- 1. Jt. Chief Controller of Explosives, South Circle Office, CHENNAI
- 2. GILBARCO VEEDER ROOT INDIA PRIVATE LIMITED, PDP Manufacturing Facility, SF No. 628/2 & 627/2, W4 Coimbatore Campus, Eachanari, Chettipalayam Road, Malumichampatti

for Chief Controller of Explosives
Nagpur

(For more information regarding status, fees and other details please visit our website http://peso.gov.in)

This is System Generated document. Signature is not required.

Disclaimer: This page gives the latest action taken by this organization on your application. This page is made available for the information of concerned applicant/licensee only. All efforts have been made to secure this information. However, PESO will not be responsible for any misuse of the information by unauthorized persons including the hackers.

about:blank 2/2

QR code to access the technical documentation website

FAFNIR GmbH Schnackenburgallee 149 c 22525 Hamburg, Germany T: +49 / 40 / 39 82 07– 0

E-mail: info@fafnir.com Web: www.fafnir.com