Technical Documentation

TORRIX

Version 5.5

The magnetostrictive level sensor

Edition: 2022-06

Version: 2

Art. no.: 350335

Table of Contents

1	Characteristics	1
2	Safety Instructions	2
3	Design and Function	3
4	Installation	5
4.1	Installation with Screw-In Unit	6
4.2	Installation with Flange	7
4.3	Installation on the Bypass	7
5	Electrical Connection	9
5.1	Wiring Diagram TORRIX	9
5.2	Wiring Diagram TORRIX Ex	9
5.3	Cable Length	10
5.4	Wiring	12
5.4.1	with Cable Gland	
5.4.2	with M12 Connection	13
6	Adjustment	14
6.1	Measuring Span at the Level Sensor	14
6.1.1	Adjustment of the Measuring Span on the TORRIX	
6.1.2	3 1	
6.2	Current Consumption in Failure Mode	
6.2.1	Adjustment of the Current Consumption on the TORRIX	
0.2.2	Adjustment of the Current Consumption with the PC	1 /
7	Maintenance	19
7.1	Return Shipment	19
8	Technical Data	20
8.1	TORRIX in Version 5.5 from Device Number 30000	20
8.2	Float	22
9	List of Figures	23

10	Annex	.24
	EU Declaration of Conformity	
	EU-Type Examination Certificate	
	Instructions	
	SIL 2	
	Certificate	
10.4.2	Safety Manual	42
10.5	Petroleum & Explosives Safety Organisation (PESO) Approval	47

© Copyright:

Reproduction and translation are permitted solely with the written consent of the FAFNIR GmbH. The FAFNIR GmbH reserves the right to carry out product alterations without prior notice.

1 Characteristics

The high-precision TORRIX level sensor is designed to provide continuous level measurement of liquids in containers. The measuring principle used by the sensor exploits the physical effect of magnetostriction and is largely unaffected by temperature. This method is particularly ideal where level measurements are required to be extremely accurate, such as in the chemical industry.

This documentation describes the TORRIX 5.5 (available from device number 30000) with cable connection on the side of the probe head. The cable connection is an M16 x 1.5 cable connection, an M12 male connector, or an M20 resp. ½ inch NPT female thread.

Another version is the TORRIX M12 with an M12 male connector on top of the probe head cover, see:

The TORRIX supplies a 4 ... 20 mA output signal that is configured using buttons in the probe head, or a digital output signal as HART® protocol. Probe lengths are possible from 100 mm to 6 m, as Flex version up to 22 m, as well as versions for different temperature and pressure ranges.

It also comes in the following versions:

- TORRIX (with screw-in unit, welded or for stepless positioning)
- TORRIX Flange (with process connection flange)
- TORRIX Flex (with flexible probe tube)
- TORRIX Bypass (for installation on a bypass with magnetic float)
- TORRIX 90 (with 90° angled probe head)
- TORRIX 6 (with 6 mm probe tube)
- TORRIX 6B (with 6 mm probe tube and short cable gland)

For the description of the communication with the HART® protocol, see:

	Technical documentation TORRIX Hart, art. no.	207095
For the	installation of the TORRIX Flex probe, see:	

TORRIX Flex Installation Guide multilingual, art. no. 350118

The TORRIX versions can also be supplied as Ex version:

The TORRIX Ex ... level sensor with Ex approval (ATEX, IECEx) can be installed in potentially explosive areas which require protection level Ga (Ex Zone 0), Ga/Gb (Ex Zone 0/1) or Gb (Ex Zone 1) for electrical equipment.

Page 1/48 Characteristics

2 Safety Instructions

The level sensor is used for continuous level measurement of liquids in containers. The level sensor must be used exclusively for this purpose. The manufacturer accepts no liability for any form of damage resulting from improper use.

The level sensor has been developed, manufactured and tested in accordance with the latest good engineering practices and generally accepted safety standards. Nevertheless, hazards may arise from its use. For this reason, the following safety instructions must be observed:

- Do not change or modify the level sensor or add any equipment without the prior consent of the manufacturer.
- The installation, operation and maintenance of the level sensor must be carried out only by expert personnel. Specialised knowledge must be acquired by regular training.
- Operators, installers and service technicians must comply with all applicable safety regulations. This also applies to any local safety and accident prevention regulations which are not stated in this user guide.

The safety instructions in this user guide are marked as follows:

If these safety instructions are not observed, it may result in the risk of accident or damages.

Useful information which ensures continued and correct operation of the equipment and makes your work easier.

Safety Instructions Page 2/48

3 Design and Function

The design of the TORRIX level sensor is shown in the version with cable connection on the side (see following figure). Other positions of the cable connection are possible depending on the version.

Inside probe head (1) of the level sensor, concealed by cap (2), are the protected terminal clamps and configuration buttons. The electrical connection is made on the side of the probe head via an M16 x 1.5 cable connection, an M12 male connector, or an M20 resp.½ inch NPT female thread (3) and the earth connection (4) (see chapters "Installation" and "Adjustment").

On the probe tube (5) is a screw-in unit (6) (cutting ring fitting or ferrule fitting) for height-adjustable mounting in the container or a flange for fixed installation (not shown). The float (7) is used to continuously measure the product filling level or interface level and is held on the probe tube by an adjusting ring (8).

The TORRIX Bypass version is supplied without a process connection and a float.

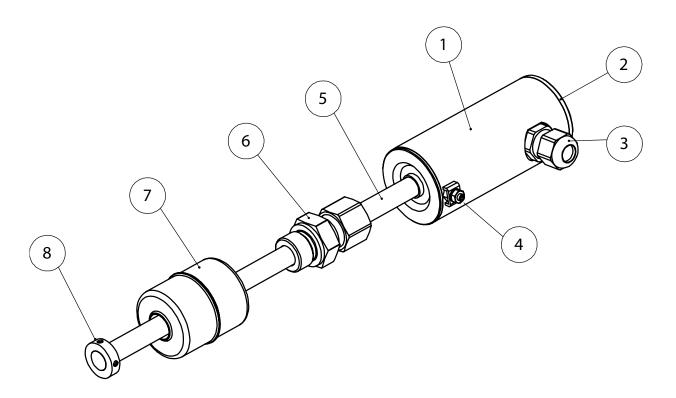


Figure 1: TORRIX 5.5

Page 3/48 Design and Function

The measuring principle illustrated in the following figure exploits the physical effect of magnetostriction and is largely unaffected by temperature. The probe tube contains a tensioned wire (1) made of magnetostrictive material. By the sensor electronics current pulses (2) are sent through the wire, which generate a circular magnetic field (3). A magnet (4) inside the float acts as the filling level sensor. Its magnetic field applies an axial magnetic field to the wire. The superposition of the two magnetic fields produces a torsional wave (5) at the float position, which then propagates along the wire in both directions. One wave propagates directly to the probe head, the other propagates down to the bottom of the probe tube and is reflected. The time between the current pulse being transmitted and the wave arriving at the probe head is measured. From these propagation times, it is possible to determine the current position of the float.

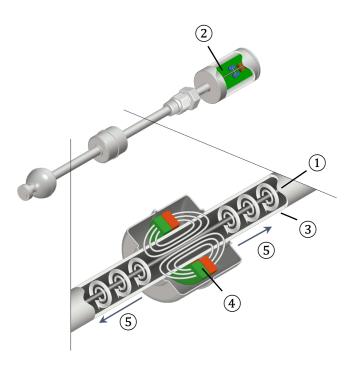


Figure 2: Operating principle of the TORRIX level sensor

- 1 Magnetostrictive wire
- 2 Current pulses
- 3 Circular magnetic field
- 4 Magnet
- 5 Torsion wave

Design and Function Page 4/48

4 Installation

When installing and maintaining the level sensor in potentially explosive areas, the national rules must be observed (Explosion Protection Regulations, Industrial Health and Safety Regulations, Equipment Safety Regulations and specific conditions of the EU-Type Examination Certificates). The generally accepted rules of engineering and these operating instructions must be observed.

All applicable local safety and accident prevention regulations not included in this manual must also be observed.

This section describes how to install the level sensor depending on the type (see the following figure).

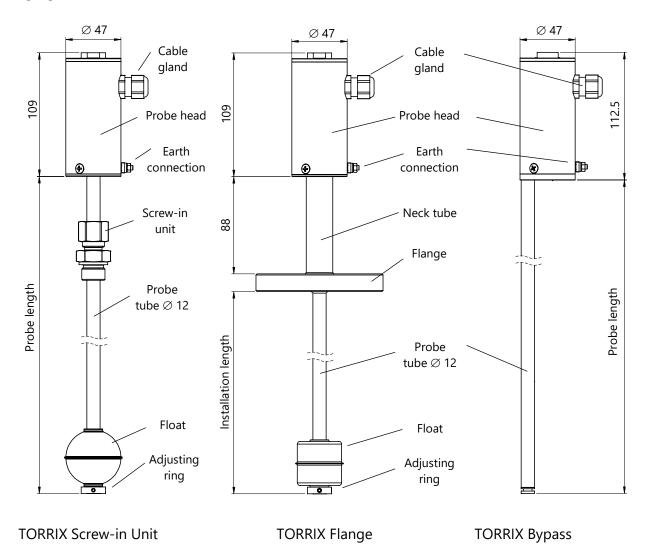


Figure 3: TORRIX versions

Page 5/48 Installation

During installation, take great care not to bend the probe tube, and protect the float from shock and impact loads.

Installing a level sensor in areas exposed to a powerful external magnetic field is not permitted because this could impair gauging.

The level sensor can also be fitted into containers from underneath. If the container additionally is pressurized, then the maximum length of the level sensor is 2 m.

If the float is removed during installation, it must be slid back onto the probe tube afterwards with the "TOP" marking oriented towards the probe head to enable correct measurements.

4.1 Installation with Screw-In Unit

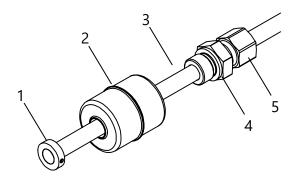
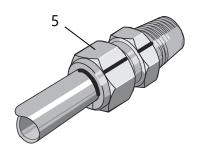


Figure 4: Installation with screw-in unit

Removing the float is necessary only if the float does not fit through the mounting hole in the tank. Otherwise, please proceed directly to steps 3, 6 and, if applicable, 7.

Insert the level sensor into the container (see Figure 4):

- (1) Loosen both set screws, remove adjusting ring (1) and float (2) from the probe tube (3).
- (2) If necessary, slot screw-in unit (4) onto the probe tube.
- (3) Insert the level sensor into the tank, provide screw-in thread (4) with a suitable sealing material, screw it in and tighten.
- (4) Slide float (2) back onto probe tube (3).



For correct measurement, the float must be slid onto the probe tube with the "TOP" marking oriented towards the probe head.

Installation Page 6/48

- (5) Refit adjusting ring (1) on the tube, align the set screws with the groove and tighten.
- (6) Adjust the height of the process connection, grease the union nut (5) with Gliss Lubricant 5GP or a similar grease paste for pre-assembly of stainless steel cutting rings and fix it finger-tight by hand.
- (7) Fix the union nut (5) with a wrench by a 1½ clockwise turn (see following figure).

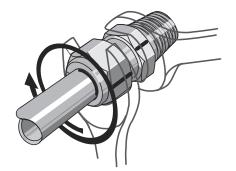


Figure 5: Tightening the compression fitting

4.2 Installation with Flange

The probe tube is firmly welded to the flange, so the installation length cannot be changed.

The TORRIX Flange must not be held on the probe tube because of the risk of bending.

Fasten the flange and the seal with the flange bolts and nuts. The bolts or nuts and the seals are the responsibility of the operating company and must be selected depending on the fluid. The fasteners and seals must comply with the requirements of the standards EN 1092-1, EN 1514 and EN 1515.

If the float does not fit through the mounting hole, see installation instructions, chapter 4.1.

4.3 Installation on the Bypass

The level sensor is mounted at the side of the bypass tube using suitable non-magnetic fasteners.

To ensure reliable gauging, the probe tube must be fitted with no deformation on the outside.

The distance between the probe and bypass tubes must be as small as possible.

Only floats approved by FAFNIR can be used.

Page 7/48 Installation

Figure 6: Installation on the bypass

Installation Page 8/48

5 Electrical Connection

5.1 Wiring Diagram TORRIX

The level sensor without Ex approval is installed according to the following wiring diagram:

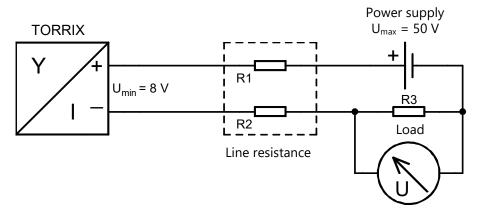


Figure 7: Wiring diagram TORRIX

Power supply: $U_{max} = 50 \text{ V DC}$

Minimum supply voltage: Umin = 8 V

Permissible total resistance (including cable resistance and load):

 $\Sigma R = (U - U_{min}) / 0.0215 A$

5.2 Wiring Diagram TORRIX Ex

The level sensor with Ex approval is installed in a potentially explosive atmosphere according to the following wiring diagram:

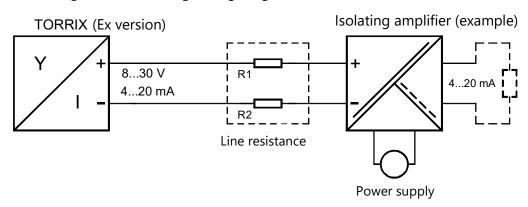


Figure 8: Wiring diagram TORRIX Ex

Power supply: $U_{max} = 30 \text{ V DC}$

Minimum supply voltage: Umin = 8 V

Permissible total resistance (including cable resistance and load):

 $\Sigma R = (U - U_{min}) / 0.0215 A$

Page 9/48 Electrical Connection

If used in potentially explosive atmosphere, the intrinsically safe version of the TORRIX Ex level sensor must only be connected to associated apparatus certified by a recognised inspection authority. The technical data can be found in the EUtype examination certificate or in the operating instructions (see appendix).

The connecting cable to the associated apparatus must be marked if used in potentially explosive atmosphere, preferably as blue cable for intrinsically safe electric circuits.

5.3 Cable Length

The maximum cable length depends on the total resistance (see chapter 5.1/5.2), composed of the line resistances and the load of connected devices.

The cable (length and cross-section) must be chosen so that the supply voltage will not fall below the sensor-specific minimum voltage (8 V) in the event of a maximum current consumption (21.5 mA).

If the level sensor is used in potentially explosive atmosphere, always make sure that the permissible external capacitance (C_0) and inductance (L_0) of the associated apparatus are not exceeded (refer to the electrical data in the EU-Type Examination Certificate of the apparatus).

Because of the voltage drop of 12 V the connection housing HPH Ex d and the safety barrier SB1 can be used with TORRIX only at a supply voltage higher than 20 volts.

Electrical Connection Page 10/48

The following table shows the maximum total resistances at different supply voltages, and cable resistances at various cross-sections:

Supply volt- age [V]	Max. total resistance [Ω]	Cable cross- section [mm²]	Cable resistance per m copper cable [Ω/m]	For connection housing HPH Ex d suitable (yes/no)
12 (-5%)	158	0.5	0.0356	no
		1.0	0.0178	no
		1.5	0.0119	no
24 (-5%)	688	0.5	0.0356	Yes
		1.0	0.0178	Yes
		1.5	0.0119	Yes

The max. cable length is calculated as follows:

$$L = (((U - U_{min}) / I_{max}) - R_B) / R_Q$$

L = Cable length [m]

U = Supply voltage [V] (with negative tolerance value -5%)

 $U_{min} = Minimum supply voltage [V] = 8 V$

 I_{max} = Maximum power consumption [A] = 0,0215 A

 $R_B = Load$

 R_Q = Cable resistance per m copper cable $[\Omega/m]$ at cable cross-section Q $[mm^2]$

Example:

Supply voltage 12 V (± 5%)

Supply voltage U = 11.4 V (12 V - 5%)

Minimum supply voltage $U_{min} = 8 \text{ V}$

Maximum power consumption $I_{max} = 0.0215 A$

Load $R_B = 86.8 \Omega$

Cable resistance per m copper cable $R_Q = 0.0356 \Omega/m$ with cable cross-section $Q = 0.5 \text{ mm}^2$

$$L = (((11.4 - 8) / 0.0215) - 86.8) / 0.0356 = 2000 m$$

Thus a cable with forward and return line (2-wire) can be up to 1000 m long.

Page 11/48 Electrical Connection

5.4 Wiring ...

The earth connector on the side of the probe head can be used for earthing or equipotential bonding.

The earthing or equipotential bonding must be carried out by the installer in accordance with the respective national installation regulations. The earth connector of the probe head can be used for earthing or equipotential bonding requirements. Also observe the general installation regulations.

Protect the probe head against the ingress of water. An external cable diameter of 4 to 8 mm ensures reliable sealing of the cable entry. Make sure that the cable glands and the probe head cover are screwed tight.

The wiring must only be done with the power disconnected.

5.4.1 ... with Cable Gland

For the wiring of the level sensor, proceed as follows:

- (1) Unscrew probe head cover (1) using an open-ended spanner.
- (2) Loosen union nut (2) of screwed cable gland (3).

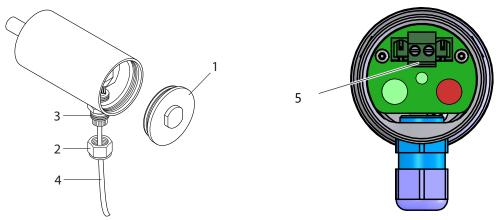
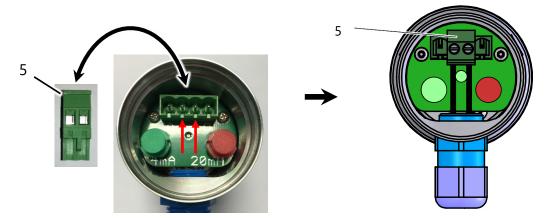
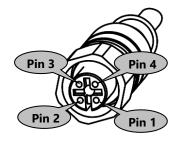


Figure 9: Wiring

- (3) Feed the two-core cable (4) into the union nut (2) and tighten the nut. The cable must have an outside diameter of 4 to 8 mm.
- (4) Remove screw terminal (5).
- (5) Connect the two-core cable (4) to the (+) and (–) marked pols of the screw terminal (5).
- (6) Plug the screw terminal (5) back on. **Use only the two middle pins as slot (red arrows in Fig. 10)**. The cable must have no traction!

Electrical Connection Page 12/48




Figure 10: Removable screw terminal

- (7) If necessary, set reference points (see chapter 6.1).
- (8) Screw probe head cover (1) back on.

5.4.2 ... with M12 Connection

- If not already connected, plug the M12 female connector of the FAFNIR connection cable onto the M12 male connector of the probe head. First tighten the union nut of the M12 female connector by hand and then use an open-ended spanner to tighten the nut further 180°. The tightening torque should be between 100 ... 150 Ncm.
- Connect the cable coming from the central unit with the FAFNIR connection cable, for example using an installation sleeve, in the following pin assignment:

signal		Colour coding of the FAFNIR cable	Pin assignment of the M12 female connector
Voltage	+	brown	Pin 1
used internally		white	Pin 2
Voltage	_	blue	Pin 3
used internally		black	Pin 4

Pin assignment of the M12 female connector of the FAFNIR connection cable

The connection cable between the TORRIX ... and the associated equipment must have the following properties:

- 2-wire unshielded cable
- For Ex applications colour blue or marked blue (cable for intrinsically safe power circuits)

Page 13/48 Electrical Connection

6 Adjustment

The settings described below can also easily be performed remotely for versions with HART® protocol without the probe head having to be opened.

6.1 Measuring Span at the Level Sensor

6.1.1 Adjustment of the Measuring Span on the TORRIX

A green (2) and a red (3) button and a green LED (light emitting diode) in the terminals housing of the probe head are used for adjustment of the 4 mA and 20 mA measuring points on the TORRIX level sensor.

By default, the level sensor (probe length minus 100 mm) is set to a maximum measuring span with 4 mA at the probe foot and 20 mA at the probe head. The measuring span is configurable for adaptation to the tank concerned. However, a minimum clearance of 10 mm must be observed.

If this minimum clearance is not observed, the display direction of the level sensor will be reversed automatically (ullage measurement).

Through configuration, it is also possible to have the measured value output inverted: e.g. the level sensor can be set to maximum measuring span with 4 mA at the probe head and 20 mA at the sensor base.

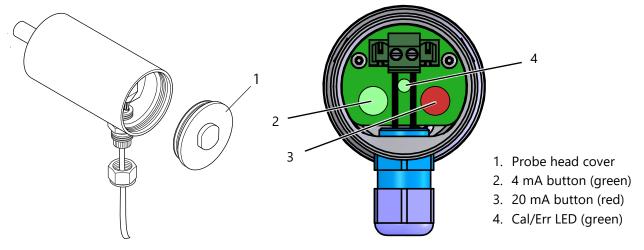


Figure 11: Terminal housing of the probe head

- (1) Unscrew probe head cover (1) using an open-ended spanner.
- (2) Press and hold green button (2) or red button (3) for at least 3 seconds. The green LED (4) begins to flash.
- (3) The level sensor is now in configuration mode. The current consumption of the level sensor is 12 mA. If no button is pressed again, the level sensor remains in configuration mode for 20 seconds before reverting to measuring mode and discarding any changes. The 4 mA and 20 mA reference point can be modified in the configuration mode in any order.

Adjustment Page 14/48

To define a reference point:

- (4) Move the float to the desired reference point and
- Briefly (0.1 to 2 seconds) press the green button (2) to define a current consumption of 4 mA at this position
- Briefly (0.1 to 2 seconds) press the red button (3) to define a current consumption of 20 mA at this position

After pressing the green button, the LED goes out for 5 seconds, after pressing the red button, the LED lights up permanently for 5 seconds.

The sensor then remains in configuration mode for another 15 seconds before saving the change and reverting to the measuring mode automatically.

The adjustment is only saved when the level sensor automatically changes from configuration mode to measuring mode and the LED goes out. The adjustment remains unchanged, even if the level sensor is disconnected from the power supply.

For "dry" settings to be possible in the case of bypass sensors, a magnetic system with spacer bracket will need to be obtained from the manufacturer of the bypass. Configuration can then be carried out even with the sensor removed.

Page 15/48 Adjustment

6.1.2 Adjustment of the Measuring Span with the PC

The TORRIX can be adjusted with the TORRIX Configuration Tool on a PC, see technical documentation:

TORRIX Configuration Tool, art. no. 350258

The configuration with the PC must only be done outside the potentially explosive area.

To connect the TORRIX to the PC, the FAFNIR USB Adapter [TORRIX] and the M12 adapter are required (art. no. 900223):

- (1) Unscrew probe head cover (1) using an open-ended spanner
- (2) Attach the M12 adapter to the 4-way terminal of the TORRIX
- (3) Connect the plug of the M12 adapter to the FAFNIR USB adapter
- (4) Connect the FAFNIR USB Adapter with the PC

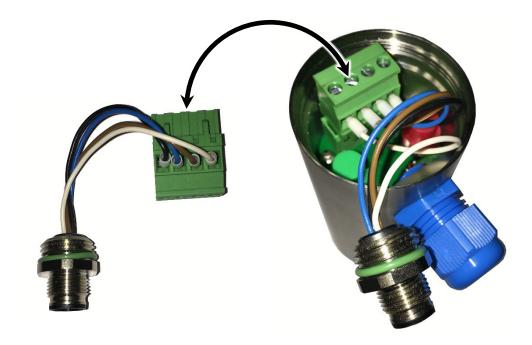


Figure 12: Connection of the M12 adapter

For further information, please see:

FAFNIR USB adapter, art. no. 350000

No M12 adapter is required for TORRIX with M12 connector. The FAFNIR USB adapter is plugged directly onto the M12 connector.

Adjustment Page 16/48

6.2 Current Consumption in Failure Mode

6.2.1 Adjustment of the Current Consumption on the TORRIX

If a malfunction is preventing the level sensor from recording a plausible float position, i.e. the measured level is incorrect, the sensor will enter the failure mode after a short time. Failure mode signalling conforms to the NAMUR NE43 recommendation. The failure current is set by default to 21.5 mA but this value can also be set to 3.6 mA.

To configure the current consumption in failure mode (see Figure 11).

- (1) Unscrew probe head cap (1) using an open-ended spanner.
- (2) Press and hold both the "4 mA" (2) and "20 mA" (3) simultaneously for at least 3 seconds.
 - Green LED (4) "Cal/Err" flashes rapidly.
 - The current consumption of the level sensor is 16 mA. After 5 seconds, the LED stops flashing and indicates the selected failure current consumption for 2.5 seconds. If LED is on permanently, I_{failure} is 21,5 mA, if the LED turns off, I_{failure} is 3,6 mA. If no button is pressed again, the level sensor remains in failure mode for a further 2.5 seconds before reverting to measuring mode and discarding any changes.
- (3) To set a current consumption
- of 3.6 mA during the dwell time (10 sec) in the failure mode, briefly press the "4 mA" (2) button (0.1 ... 2 seconds).
- of 21.5 mA during the dwell time (10 sec) in the failure mode, briefly press the "20 mA" (3) button (0.1 ... 2 seconds).

The adjustment is only saved when the level sensor automatically changes from configuration mode to measuring mode and the LED goes out. The adjustment remains unchanged, even if the level sensor is disconnected from the power supply.

(4) Screw on the probe head cover (1) again.

If, during operation, the level sensor detects that the level cannot be output correctly due to an insufficient supply voltage, it enters failure mode and sets current consumption to 3.6 mA (regardless of any failure current settings).

6.2.2 Adjustment of the Current Consumption with the PC

If a malfunction is preventing the level sensor from recording a plausible float position, i.e. the measured level is incorrect, the sensor will enter the failure mode after a short time.

Page 17/48 Adjustment

Failure mode signalling conforms to the NAMUR NE43 recommendation. The failure current is set by default to 21.5 mA but this value can also be set to 3.6 mA.

The TORRIX can be adjusted with the TORRIX Configuration Tool on a PC, see technical documentation:

TORRIX Configuration Tool, art. no. 350258

The configuration with the PC must only be done outside the potentially explosive area.

- (1) Connect the TORRIX to the PC and start the TORRIX configuration tool
- (2) Select the assigned COM port in the "COM Port" selection box
- (3) Select the current consumption in case of an error in the "Alarm Current" selection box.

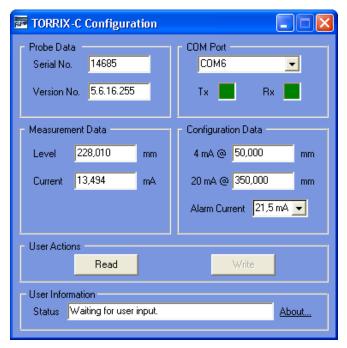


Figure 13: TORRIX Configuration Tool

(4) Confirm and save the adjustment by clicking on the "Write" button.

Adjustment Page 18/48

7 Maintenance

7.1 Return Shipment

Before returning any FAFNIR equipment the Return Material Authorization (RMA) by the FAFNIR customer support is required. Please contact your account manager or the customer service to receive the instructions on how to return goods.

The return of FAFNIR equipment is possible only with authorization by the FAFNIR customer service.

Page 19/48 Maintenance

8 Technical Data

8.1 TORRIX in Version 5.5 from Device Number 30000

Electrical connection	2-wire terminal 4 20 mA (3.8 20.5 mA) current consumption for level indication 21.5 mA or 3.6 mA current consumption in failure mode
Supply voltage TORRIX TORRIX EX	8 50 V DC 8 30 V DC
Process connection	Screw-in unit with possibility of variable height adjustment Standard G ½ (compression fitting) Flange on request Material see probe tube Bypass assembly
Probe head	Height 109 mm, Bypass version 112.5 mm Protection class IP68 (according to TÜV NORD test report 13 993 120483 of 02.09.2013) Material stainless steel Cable diameter 4 8 mm Temperature -40 +85 °C
Probe tube	Length 200 to 6,000 mm (to order) Length TORRIX Flex 1.5 m 22 m Diameter 12 mm (other diameters on request) Material: 1.4571 standard (Hastelloy, or other materials on request) Measuring range freely adjustable (> 10 mm) Maximum temperature (HHT) -40 °C +450 °C High temperature (HT) -40 °C +250 °C Normal temperature (NT) -40 °C +125 °C Low temperature (LT) -65 °C +125 °C
Communication	HART® protocol (optional)

Technical Data Page 20/48

Accuracy Digital component NT/LT	Linearity better than ± 0.2 mm or ± 0.01 %, better than ± 0.001 % per K Repetition accuracy better than 0.05 mm Resolution better than 10 μ m
Accuracy Digital component HT/HHT	Linearity better than ± 0.5 mm or ± 0.025 %, better than ± 0.01 % per K Repetition accuracy better than 0.1 mm Resolution better than 50 μ m
Accuracy Digital component Bypass	Linearity better than ± 0.5 mm or ± 0.025 %, better than ± 0.001 % per K Repetition accuracy better than 0.05 mm Resolution better than 10 μ m
Accuracy Digital component Bypass HT/HHT	Linearity better than ±2 mm or ±0.1 %, better than ±0.01 % per K Repetition accuracy better than 0.5 mm Resolution better than 50 µm
Accuracy Analogue component	Linearity better than $\pm 0.01~\%$ Temperature coefficient better than 0.01% per K Resolution better than 0.5 μ A (16 bit)

Page 21/48 Technical Data

8.2 Float

The float is an essential component of the level sensor that must be matched to the medium in respect of density, pressure resistance and material durability.

The following floats are exchangeable and can be ordered separately. Other float types and materials are available on request.

The density and magnet position of floats of the same type may vary slightly, so that a readjustment may be necessary.

All floats are also suitable for use at a pressure of -1 bar (vacuum).

Excerpt from available float range:

Min. density of medium [g/cm³]	Material	Max. operating pressure [bar] at 20 °C *)	Shape [mm]
0.5	Titanium	20	Ball ø 50
0.6	1.4571 / 316 Ti	20	Ball ø 52
0.7	1.4571 / 316 Ti	16	Cylinder ø 53
0.7	C276	10	Cylinder ø 46
0.7	1.4571 / 316 Ti	40	Ball ø 52
0.85	1.4571 / 316 Ti	20	Ball ø 43
0.95	1.4571 / 316 Ti	50	Ball ø 43

^{*)} above 50 °C the maximum operating pressure decreases

Pressure resistance is guaranteed for undamaged floats only. Even the most minor and invisible dents, which can occur if, for example, the float is dropped from a bench onto a stone floor, are sufficient to cause a significant deterioration in pressure resistance.

Technical Data Page 22/48

9 List of Figures

Figure 1: TORRIX 5.5	3
Figure 2: Operating principle of the TORRIX level sensor	
Figure 3: TORRIX versions	5
Figure 4: Installation with screw-in unit	6
Figure 5: Tightening the compression fitting	7
Figure 6: Installation on the bypass	3
Figure 7: Wiring diagram TORRIX	9
Figure 8: Wiring diagram TORRIX Ex	9
Figure 9: Wiring	12
Figure 10: Removable screw terminal	13
Figure 11: Terminal housing of the probe head	14
Figure 12: Connection of the M12 adapter	16
Figure 13: TORRIX Configuration Tool	1

EU-Konformitätserklärung EU Declaration of Conformity Déclaration UE de Conformité Dichiarazione di Conformità UE

FAFNIR GmbH, Deutschland / Germany / Allemagne / Germania

erklärt als Hersteller in alleiniger Verantwortung, dass die Produkte declares as manufacturer under sole responsibility that the products déclare sous sa seule responsabilité en qualité de fabricant que les produits dichiara sotto la sola responsabilità del produttore, che i prodotti sono

Füllstandsensoren / Filling Level Sensors / Capteurs de Niveau / Sensori di livello

TORRIX ... / VISY-Stick ...

den Vorschriften der europäischen Richtlinien comply with the regulations of the European directives sont conformes aux réglementations des directives européennes suivantes rispetta i regolamenti delle direttive europee

2011/65/EU	Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten	RoHS
2011/65/EU	Restriction of the use of certain hazardous substances in electrical and electronic equipment	RoHS
2011/65/UE	Limitation de l'utilisation de certaines substances dangereuses dans les équipements électriques et électroniques	RoHS
2011/65/UE	Restrizione dell'uso di determinate sostanze pericolose nelle apparecchiature elettriche ed elettroniche	RoHS
2014/30/EU	Elektromagnetische Verträglichkeit	EMV
2014/30/EU	Electromagnetic compatibility	EMC
2014/30/UE	Compatibilité électromagnétique	CEM
2014/30/UE	Compatibilità elettromagnetica	CEM
2014/34/EU	Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen	ATEX
2014/34/EU	Equipment and protective systems intended for use in potentially explosive atmospheres	ATEX
2014/34/UE	Appareils et systèmes de protection destinés à être utilisés en atmosphères explosibles	ATEX
2014/34/UE	Apparecchi e sistemi di protezione destinati a essere utilizzati in atmosfera potenzialmente esplosiva	ATEX

durch die Anwendung folgender harmonisierter Normen entsprechen by applying the harmonised standards par l'application des normes applicando le norme armonizzate

RoHS / RoHS / RoHS / RoHS EMV / EMC / CEM / CEM ATEX / ATEX / ATEX / ATEX EN 50581:2012 EN 61326-1:2013 EN IEC 60079-0:2018 EN 60079-11:2012 EN 60079-26:2015

Die Produkte sind bestimmt als Elektro- und Elektronikgeräte der RoHS-The products are determined as electrical and electronic equipment of RoHS Les produits sont déterminés comme des équipments électriques et électroniques de RoHS I prodotti sono determinati come apparecchiature elettriche ed elettroniche della RoHS

Kategorie / Category / Catégorie / Categoria

Überwachungs- und Kontrollinstrumenten in der Industrie / Industrial Monitoring and Control Instruments / Instruments de contrôle et de surveillance industriels / Strumenti di monitoraggio e controllo industriali

Die Produkte entsprechen den EMV-Anforderungen The products comply with the EMC requirements Les produits sont conformes aux exigences CEM I prodotti sono conformi ai requisiti CEM

Störaussendung / Emission / Émission / L'emissione Störfestigkeit / Immunity / D'immunité / Immunità Klasse B / Class B / Classe B / Classe B Industrielle elektromagnetische Umgebung / Industrial electromagnetic environment / Environnement électromagnétique industriel / Ambiente elettromagnetico industriale

Die notifizierte Stelle TÜV NORD CERT GmbH, 0044 hat eine EU-Baumusterprüfung durchgeführt und folgende Bescheinigung ausgestellt The notified body TÜV NORD CERT GmbH, 0044 performed a EU-type examination and issued the certificate L'organisme notifié TÜV NORD CERT GmbH, 0044 a effectué examen UE de type et a établi l'attestation L'organismo notificato TÜV NORD CERT GmbH, 0044 ha effettuato esame UE del tipo e rilasciato il certificato

TÜV 99 ATEX 1496 X

TORRIX Ex ... / VISY-Stick ...

Hamburg, 30.03.2020

Ort, Datum / Place, Date / Lieu, Date / Luogo, data

Geschäftsführer / Managing Director / Gérant / Direttore Generale: René Albrecht

Seite / Page / Page / Pagina 1/1

Translation

(1) EU-Type Examination Certificate

(2) Equipment and protective systems intended for use in potentially explosive atmospheres, **Directive 2014/34/EU**

(3) Certificate Number

TÜV 99 ATEX 1496 X

issue: (

(4) for the product:

Filling Level Sensor type VISY-Stick ... and type TORRIX Ex ...

(5) of the manufacturer:

FAFNIR GmbH

(6) Address:

Schnackenburgallee 149 c, 22525 Hamburg, Germany

Order number:

8003011045

Date of issue:

2020-02-19

- (7) The design of this product and any acceptable variation thereto are specified in the schedule to this EU-Type Examination Certificate and the documents therein referred to.
- (8) The TÜV NORD CERT GmbH, Notified Body No. 0044, in accordance with Article 17 of the Directive 2014/34/EU of the European Parliament and the Council of 26 February 2014, certifies that this product has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of products intended for use in potentially explosive atmospheres given in Annex II to the Directive.
 The examination and test results are recorded in the confidential ATEX Assessment Report No. 20 203 254816.
- (9) Compliance with the Essential Health and Safety Requirements has been assured by compliance with:

EN IEC 60079-0:2018

EN 60079-11:2012

EN 60079-26:2015

except in respect of those requirements listed at item 18 of the schedule.

- (10) If the sign "X" is placed after the certificate number, it indicates that the product is subject to the Specific Conditions for Use specified in the schedule to this certificate.
- 11) This EU-Type Examination Certificate relates only to the design, and construction of the specified product. Further requirements of the Directive apply to the manufacturing process and supply of this equipment. These are not covered by this certificate.
- (12) The marking of the product shall include the following:

 (ξ_x) See item 15 of the schedule

TÜV NORD CERT GmbH, Langemarckstraße 20, 45141 Essen, notified by the central office of the countries for safety engineering (ZLS), Ident. Nr. 0044, legal successor of the TÜV NORD CERT GmbH & Co. KG Ident. Nr. 0032

The head of the notified body

Roder

Hanover office, Am TÜV 1, 30519 Hannover, Tel. +49 511 998-61455, Fax +49 511 998-61590

(13) SCHEDULE

- (14) EU-Type Examination Certificate No. TÜV 99 ATEX 1496 X issue 02
- (15) Description of product

The filling level sensors are used for continuous measurement of liquid levels within potentially explosive areas. Floaters are used to detect the fluid levels. These slide on a sensor tube. For interface or water detection, a second float can be mounted on the sensor tube. In addition, the density of the liquid can be determined by means of a density module. The temperature measuring chain VISY-Stick ... Temp ... is used to measure temperatures at different heights and does not use any floats.

The filling level sensors type VISY-Stick ... and type TORRIX Ex ... may also be manufactured according to the test documents listed in the ATEX test report. The changes affect the internal structure as well as the change of temperature classes. Furthermore, the equipment was assessed according to the latest standards.

The marking is as follows:

Type TORRIX Ex ...

(Ex) II 1 G Ex ia IIC T6...T4 Ga resp. II 1/2 G Ex ia IIC T6...T4 Ga/Gb resp. II 2 G Ex ia IIC T6...T4 Gb resp. II 1 D Ex ia IIIC T160 °C Da

Type TORRIX Ex ...-A resp. TORRIX Ex ... Flex resp. TORRIX Ex ... PL

(Ex) II 1 G Ex ia IIB T6...T4 Ga resp. II 1/2 G Ex ia IIB T6...T4 Ga/Gb resp. II 1 D Ex ia IIIC T160 °C Da

Type VISY-Stick ... resp. VISY-Stick (Flex) Temp resp. TORRIX Ex SC...

(Ex) II 1 G Ex ia IIC T6...T5 Ga resp. II 1/2 G Ex ia IIC T6...T4 Ga/Gb resp. II 2 G Ex ia IIC T6...T4 Gb resp. II 1 D Ex ia IIIC T135 °C Da

Type VISY-Stick Advanced ... resp. VISY-Stick ... Flex ... resp. TORRIX Ex SC...-A resp. TORRIX Ex SC... Flex resp. TORRIX Ex SC... PL

(Ex) II 1 G Ex ia IIB T6...T5 Ga resp. II 1/2 G Ex ia IIB T6...T4 Ga/Gb resp. II 2 G Ex ia IIB T6...T4 Gb resp. II 1 D Ex ia IIIC T135 °C Da

Type VISY-Stick ... RS485 resp. VISY-Stick (Flex) Temp RS485 resp. TORRIX Ex C... resp. TORRIX Ex RS485... resp. TORRIX Ex TAG...

(Ex) II 1 G Ex ia IIC T6...T4 Ga resp. II 1/2 G Ex ia IIC T6...T4 Ga/Gb resp. II 2 G Ex ia IIC T6...T4 Gb resp. II 1 D Ex ia IIIC T125 °C Da

Type VISY-Stick ... Advanced RS485 resp. VISY-Stick ... Flex RS485 resp. TORRIX Ex C...-A resp. TORRIX Ex RS485...-A resp. TORRIX Ex TAG...-A resp. TORRIX Ex TAG...-A resp. TORRIX Ex TAG... Flex resp. TORRIX Ex TAG... Flex resp. TORRIX Ex TAG... Flex resp. TORRIX Ex TAG... PL

(Ex) II 1 G Ex ia IIB T6...T4 Ga resp. II 1/2 G Ex ia IIB T6...T4 Ga/Gb resp. II 1 D Ex ia IIIC T125 °C Da

Type VISY-Stick ... TLS resp. VISY-Stick (Flex) Temp TLS

II 1 G Ex ia IIC T4 Ga

resp.

II 1/2 G Ex ia IIC T4...T3 Ga/Gb

resp.

II 2 G Ex ia IIC T4...T3 Gb

resp.

II 1 D Ex ia IIIC T195 °C Da

Type VISY-Stick ... Advanced TLS resp. VISY-Stick ... Flex TLS

II 1 G Ex ia IIB T4 Ga

resp.

II 1/2 G Ex ia IIB T4...T3 Ga/Gb

resp.

II 2 G Ex ia IIB T4...T3 Gb

resp.

II 1 D Ex ia IIIC T195 °C Da

Type designation:

Type VISY-Stick ... (only Ex relevant nomenclatures):

VISY-Stick Sump ...

Environmental sensor (Leakage control)

VISY-Stick Advanced ... Advanced precision of measurement and temperature sensors

VISY-Stick Flex ...

Flexible sensor tube

VISY-Stick ...

Serial communication

VISY-Stick ... RS485

RS-485 interface

VISY-Stick ... Temp ...

Temperature measuring chain

VISY-Stick ... TLS

TLS interface

Type TORRIX Ex ... (only Ex relevant nomenclatures):

TORRIX Ex ...

4...20 mA interface (with configuration buttons) optionally with HART protocol

TORRIX Ex C...

4...20 mA interface (without configuration buttons) optionally with HART protocol

TORRIX Ex RS485...

RS-485 interface

TORRIX Ex SC...

Serial communication

TORRIX Ex TAG...

TAG interface (communication in accordance with EN 14116)

TORRIX Ex ...-A

Advanced precision of measurement and temperature sensors

TORRIX Ex ... Flex

Flexible sensor tube

TORRIX Ex ... PL

With plastic coating against very aggressive media

Technical data:

Type VISY-Stick ... resp. TORRIX Ex SC...

Signal- and power circuit

(terminals +, -, A, B)

in type of protection "Intrinsic Safety" Ex ia IIC/IIB/IIIC

only for the connection to a certified intrinsically safe circuit

Maximum values: U_i = 15 V

 $I_i = 60 \text{ mA}$

 $P_{i} = 100 \text{ mW}$

 $L_i = 100 \mu H$

 $C_i = 10 \text{ nF}$

The types VISY-Stick Advanced, VISY-Stick Flex, TORRIX Ex SC...-A, TORRIX Ex SC... Flex and TORRIX Ex SC... PL are only for gas group IIB allowed.

Type VISY-Stick ... RS485 resp. TORRIX Ex ...

Signal- and power circuit

(terminals +, -, A, B resp. +, -) in type of protection "Intrinsic Safety" Ex ia IIC/IIB/IIIC

only for the connection to a certified intrinsically safe circuit

Maximum values: U_i = 30 V

 $I_i = 200 \text{ mA} \text{ at } T_a \leq +70 \text{ °C resp.}$

 $I_i = 100 \text{ mA at } T_a \le +85 \text{ °C}$

 $P_i = 1 W$

 $L_i = 20 \mu H$

 $C_i = 10 \text{ nF}$

The types VISY-Stick Advanced RS485, VISY-Stick Flex RS485, TORRIX Ex ...-A, TORRIX Ex ... Flex and TORRIX Ex ... PL are only for gas group IIB allowed.

Type VISY-Stick ... TLS

Signal- and power circuit

(terminals +, -)

in type of protection "Intrinsic Safety" Ex ia IIC/IIB/IIIC

only for the connection to a certified intrinsically safe circuit

Maximum values: $U_i = 13 \text{ V}$

 $I_i = 200 \text{ mA}$

 $P_i = 625 \text{ mW}$

 $L_i = 410 \, \mu H$

 $C_i = 20 \text{ nF}$

The types VISY-Stick Advanced TLS and VISY-Stick Flex TLS are only for gas group IIB allowed.

Permissible ambient temperature range:

Use as category 1G apparatus

Type VISY-Stick ... resp. TORRIX Ex SC...

Temperature class	Ambient and Medium temperature range
T6	-20 °C to +50 °C
T1 to T5	-20 °C to +60 °C

Type VISY-Stick ... RS485 resp. TORRIX Ex ...

Temperature class	Ambient and Medium temperature range
T6	I _i ≤ 100 mA: -20 °C to +40 °C
	$I_i \le 200 \text{ mA}$: -20 °C to +25 °C
T5	I _i ≤ 100 mA: -20 °C to +55 °C
	$I_i \le 200 \text{ mA}$: -20 °C to +40 °C
T1 to T4	-20 °C to +60 °C

The process pressure for the media must be between 0.8 bar and 1.1 bar where explosive vapour-air mixtures are present. If no explosive mixtures are present, the equipment may also be operated outside this area according to the manufacturer's specification.

Use as category 1/2G apparatus

Type VISY-Stick ... resp. TORRIX Ex SC...

Temperature class	Ambient temperature range	Medium temperature range	
Т6	-40 °C to +50 °C	-20 °C to +50 °C	
T5	-40 °C to +65 °C	-20 °C to +60 °C	
T1 to T4	-40 °C to +85 °C	-20 °C to +60 °C	

Type VISY-Stick ... RS485 resp. TORRIX Ex ...

Temperature class	Ambient temperature range	Medium temperature range $I_i \le 100$ mA: -20 °C to +40 °C $I_i \le 200$ mA: -20 °C to +25 °C	
T6	I _i ≤ 100 mA: -40 °C to +40 °C I _i ≤ 200 mA: -40 °C to +25 °C		
Т5	I _i ≤ 100 mA: -40 °C to +55 °C I _i ≤ 200 mA: -40 °C to +40 °C	I _i ≤ 100 mA: -20 °C to +55 °C I _i ≤ 200 mA: -20 °C to +40 °C	
T1 to T4	I _i ≤ 100 mA: -40 °C to +85 °C I _i ≤ 200 mA: -40 °C to +70 °C	-20 °C to +60 °C	

Type VISY-Stick ... TLS

Temperature class	Ambient temperature range	Medium temperature range
T4	-40 °C to +75 °C	-20 °C to +60 °C
T1 to T3	-40 °C to +85 °C	-20 °C to +60 °C

The process pressure for the media must be between 0.8 bar and 1.1 bar where explosive vapour-air mixtures are present. If no explosive mixtures are present, the equipment may also be operated outside this area according to the manufacturer's specification.

Use as category 2G apparatus

Type VISY-Stick ... resp. TORRIX Ex SC...

Temperature class	Ambient temperature range	Medium temperature range
T6	-40 °C to +50 °C	-40 °C to +85 °C
T5	-40 °C to +65 °C	-40 °C to +100 °C
T4	-40 °C to +85 °C	-40 °C to +135 °C
Т3	-40 °C to +85 °C	-40 °C to +200 °C
T2	-40 °C to +85 °C	-40 °C to +300 °C
T1	-40 °C to +85 °C	-40 °C to +450 °C

Type VISY-Stick ... RS485 resp. TORRIX Ex ...

	Temperature class	Ambient temperature range	Medium temperature range	
20	Т6	I _i ≤ 100 mA: -40 °C to +40 °C I _i ≤ 200 mA: -40 °C to +25 °C	-40 °C to +85 °C	
ā	T5	I _i ≤ 100 mA: -40 °C to +55 °C I _i ≤ 200 mA: -40 °C to +40 °C	-40 °C to +100 °C	
	T4	I _i ≤ 100 mA: -40 °C to +85 °C I _i ≤ 200 mA: -40 °C to +70 °C	-40 °C to +135 °C	
	Т3	I _i ≤ 100 mA: -40 °C to +85 °C I _i ≤ 200 mA: -40 °C to +70 °C	-40 °C to +200 °C	
	T2	I _i ≤ 100 mA: -40 °C to +85 °C I _i ≤ 200 mA: -40 °C to +70 °C	-40 °C to +300 °C	
	T1	I _i ≤ 100 mA: -40 °C to +85 °C I _i ≤ 200 mA: -40 °C to +70 °C	-40 °C to +450 °C	

Type VISY-Stick ... TLS

Temperature class		Ambient temperature range	Medium temperature range	
	T4	-40 °C to +75 °C	-40 °C to +135 °C	
	T3	-40 °C to +85 °C	-40 °C to +200 °C	
	T2	-40 °C to +85 °C	-40 °C to +300 °C	
	T1	-40 °C to +85 °C	-40 °C to +450 °C	

Use as category 1D apparatus

Type TORRIX Ex.

Maximum surface temperature		Ambient temperature T	
Dust layer ≤ 5 mm	Immersed in dust	Ambient temperature T _a	
T _a + 75 °C	Observe EN 60079-14	-40 °C to +85 °C	

Type VISY-Stick ... resp. TORRIX Ex SC...

Maximum surface temperature		Ambient temperature T	
Dust layer ≤ 5 mm	Immersed in dust	Ambient temperature T _a	
T _a + 30 °C	135 °C	-40 °C to +85 °C	

Type VISY-Stick ... TLS

Maximum surface temperature		Ambient temperature T	
Dust layer ≤ 5 mm	Immersed in dust	Ambient temperature T _a	
135 °C	135 °C	-40 °C to +77 °C	
T _a + 110 °C	Observe EN 60079-14	-40 °C to +85 °C	

Type VISY-Stick ... RS485 resp. TORRIX Ex C... resp. TORRIX Ex RS485... resp. TORRIX Ex TAG...

Maximum surface temperature		Ambient temperature T	
Dust layer ≤ 5 mm	Immersed in dust	Ambient temperature T _a	
I _i ≤ 100 mA: T _a + 40 °C	Observe EN 60079-14	-40 °C to +85 °C	
I _i ≤ 200 mA: T _a + 55 °C	Observe EN 60079-14	-40 °C to +70 °C	

All further data are valid unchanged.

- (16) Drawings and documents are listed in the ATEX Assessment Report No. 20 203 254816
- (17) Specific Conditions for Use
 - 1. When using Titanium Floats or Sump Environmental Sensors, the risk of ignition due to impact or friction shall be avoided.
 - 2. When using plastic floats, there is a danger of ignition due to electrostatic discharge. The manufacturer's instructions must be observed.
- (18) Essential Health and Safety Requirements

no additional ones

Instructions in accordance with directive 2014/34/EU

TÜV 99 ATEX 1496 X

Version: 02.2020

Filling Level Sensors type VISY Stick ... and type TORRIX Ex ...

I Range of application

The filling level sensors are designed for continuous measurement of liquid levels. Floats are used to measure the liquid levels. These slide on a sensor tube. For interface or water detection, a second float can be mounted on the sensor tube. In addition, the density of the liquid can be determined via a density module. The temperature measuring chain VISY-Stick ... Temp ... is used to measure temperatures at different heights and does not use any floats.

The power supply for the devices VISY-Stick ... and the forwarding of the measured data to a superordinate evaluation system is provided by isolating amplifier VP-... or VPI or, in the case of the sensor VISY-Stick ... TLS, e.g. by the TLS-... console from Veeder-Root. If an RS-485 interface is used, the sensor VISY-Stick ... RS485 can be used.

The filling level sensors TORRIX Ex ... can be produced with different interfaces. These are, for example, interfaces "4 ... 20 mA" (TORRIX Ex ... and TORRIX Ex C...), "RS-485" (TORRIX Ex RS485...) or TAG (TORRIX Ex TAG...). The filling level sensors TORRIX Ex SC... are connected to the isolating amplifier VP-... or VPI.

II Standards

The device is designed according to the following European standards

EN IEC 60079-0:2018 Equipment – General requirements

EN 60079-11:2012 Equipment protection by intrinsic safety "i"

EN 60079-26:2015 Equipment with Equipment Protection Level (EPL) Ga

III Instructions for safe ...

III.a ... use

The approval applies to equipment types VISY-Stick ... and TORRIX Ex ...

The devices are designed as intrinsically safe apparatuses and are approved for use in potentially explosive areas. The "advanced" (TORRIX Ex ...-A, VISY-Stick Advanced ...) and "flexible" filling level sensors (TORRIX Ex ... Flex, VISY-Stick ... Flex ...) as well as types with plastic coating against very aggressive media (TORRIX Ex ... PL) can be used for all gases of groups IIA and IIB. The temperature measuring chain VISY-Stick ... Temp ... and all other filling level sensors can be used for all gases of groups IIA, IIB and IIC. In addition, all devices can be used for dust groups IIIA, IIIB and IIIC.

To use a non-conductive plastic floats in potentially explosive areas with gases of group IIC the hazard of static charging must be prevented. Here a few conditions need to be observed:

- The use of the float in strongly flowing, non-conductive liquids is forbidden;
- There must be no agitator/mixer in the tank;
- Frictions on non-conductive components are to be avoided;
- The float must not be cleaned in a dry state.

III.b ... assembling and dismantling

The assembly and disassembly must solely be carried out with the power disconnected!

Prior to the installation, it may be necessary that the float/s or the density module is disassembled. During the assembly it must be ensured that the float/s or the module is/are mounted the right way on the sensor tube.

Only with the TORRIX Ex ... with screw terminals the opening of the sensor head is planned. Further disassembly may damage the filling level sensor and void its approval.

Page 1/7

III.c ... installation

All wiring operations must solely be carried out with the power disconnected. Special rules and regulations, including EN 60079-14 and local installation regulations, must be observed.

If a device is supplied with screw-in unit, the thread of the screw-in unit must be fitted with a suitable sealing material, screwed into the existing sleeve and tightened. In case of a riser installation the plastic centring aid is plugged onto the sensor head. Then allow the sensor to slide into the riser tube until it stands firmly on the bottom. If the filling level sensor is supplied without process fitting, the installer is responsible for compliance with the Ex requirements.

General information (see also EN 60079-26, Clause 4.3):

If a device is installed into the boundary wall between zone 0 and zone 1, it is essential to ensure that a minimum protection of IP66 or IP67 is achieved after installation.

Through the process connection, there may be an opening in the boundary wall to the area requiring EPL Ga. There is then the risk of the release of flammable gas and the flame entrance.

Flexible filling level sensor (TORRIX Ex ... Flex ..., VISY-Stick ... Flex ...)

This type can be produced with different sensor bases to serve for stabilizing the sensor. A base can be a magnetic base. The magnet is then encapsulated in an electricity conducting plastic and can therefore be used in potentially explosive areas.

If this version is manufactured without a fixture, it may only be used in non-flowing liquids or it must be ensured that it does not turn, e.g. by a protective tube or by a weight as a sensor foot.

LPG filling level sensor VISY-Stick ... LPG ...

The adjustable installation kit for LPG tanks was developed to allow the sensor to be installed and removed at any time without any additional work and without having to open the tank. The adjustable installation kit for LPG tanks consists of a jacket pipe with special LPG float made of BUNA and a ³/₄" NPT cutting ring fitting. In the case of installation with a cutting ring fitting, the position of the sensor can no longer be altered after the union nut has been tightened.

Environmental sensor VISY-Stick Sump ...

This environmental sensor can be fixed with the mounting kit.

When wiring the sensor to the associated apparatus (preferably blue coloured cable), the approved inductance and capacitance of the associated apparatus must not be exceeded. The terminals of the sensor must be connected to the same terminals of the isolating amplifier.

For the filling level sensors with screw terminals type TORRIX Ex ... and TORRIX Ex HART ... the terminal designation is "+" and "-" For devices with M12 plug, the pin assignments are as follows:

_				
Pin	TORRIX Ex SC VISY-Stick	TORRIX Ex C TORRIX Ex TAG VISY-Stick TLS	TORRIX Ex RS485 VISY-Stick RS485	M12 cable (female)
1	+	+	+	
2	A		A (+)	Pin3 Pin4
3	-	-	-	
4	В		B (-)	Pin2 Pin1

Table 1: Pin assignment of the sensors

The sensors must be integrated into the potential equalization of the hazardous area. A PA connecting terminal on the sensor head is available for integration of the devices into the potential equalization.

General information (see also EN 60079-14:2013, clause 6.4.1):

Exposed conductive parts need not be separately connected to the equipotential bonding system if they are firmly secured to and are in conductive contact with structural parts or piping which are connected to the equipotential bonding system.

III.d ... adjustment

For the operation the sensors, no Ex-relevant adjustments are necessary.

III.e ... putting into service

Before putting into service, all devices must be checked for correct connection and installation. The electrical supply, including the connected devices, must be checked.

III.f ... maintenance (servicing and emergency repair)

The apparatus is generally maintenance-free. In the case of a defect, this must be returned to the manufacturer FAFNIR or one of its representatives.

In accordance with the requirements for dielectric strength according to EN 60079-11, Clause 6.3.13 there is compliance with the insulation test between the intrinsically safe circuit and the chassis of the device with a voltage of 500 V_{AC} .

Warning: The type VISY-Stick Sump ... and floats made of non-conductive plastic must only be cleaned with a damp cloth, to minimize the risk of electrostatic charging.

IV Equipment marking

1 Manufacturer: FAFNIR GmbH, 22525 Hamburg

2 Type designation: TORRIX Ex ... / VISY-Stick ...

3 Certificate number: TÜV 99 ATEX 1496 X

4 Ex marking:

4a according to directive:

II 1 GD II 1/2 G II 2 G

4b according to standards:

TORRIX Ex ...

Ex ia IIC T6...T4 Ga Ex ia IIC T6...T4 Ga/Gb Ex ia IIC T6...T4 Gb Ex ia IIIC T160 °C Da

TORRIX Ex ...-A / TORRIX Ex ... Flex / TORRIX Ex ... PL

Ex ia IIB T6...T4 Ga Ex ia IIB T6...T4 Ga/Gb Ex ia IIB T6...T4 Gb Ex ia IIIC T160 °C Da

TORRIX Ex SC... / VISY-Stick ... / VISY-Stick (Flex) Temp

Ex ia IIC T6...T5 Ga Ex ia IIC T6...T4 Ga/Gb Ex ia IIC T6...T4 Gb Ex ia IIIC T135 °C Da

TORRIX Ex SC...-A / TORRIX Ex SC... Flex / TORRIX Ex SC... PL / VISY-Stick Advanced ... / VISY-Stick ... Flex ...

Ex ia IIB T6...T5 Ga Ex ia IIB T6...T4 Ga/Gb Ex ia IIB T6...T4 Gb Ex ia IIIC T135 °C Da

TORRIX Ex C... / TORRIX Ex RS485... / TORRIX Ex TAG... / VISY-Stick ... RS485 / VISY-Stick (Flex) Temp RS485

Ex ia IIC T6...T4 Ga Ex ia IIC T6...T4 Ga/Gb Ex ia IIC T6...T4 Gb Ex ia IIIC T125°C Da

TORRIX Ex C...-A / TORRIX Ex C... Flex / TORRIX Ex C... PL /

TORRIX Ex RS485...-A / TORRIX Ex RS485... Flex / TORRIX Ex RS485... PL / TORRIX Ex TAG...-A / TORRIX Ex TAG... Flex / TORRIX Ex TAG... PL /

VISY-Stick Advanced ... RS485 / VISY-Stick ... Flex ... RS485

Ex ia IIB T6...T4 Ga Ex ia IIB T6...T4 Ga/Gb Ex ia IIB T6...T4 Gb Ex ia IIIC T125°C Da

VISY-Stick ... TLS / VISY-Stick (Flex) Temp TLS

Ex ia IIC T4 Ga

Ex ia IIC T4...T3 Ga/Gb Ex ia IIC T4...T3 Gb Ex ia IIIC T195°C Da

VISY-Stick Advanced ... TLS / VISY-Stick ... Flex ... TLS

Ex ia IIB T4 Ga

Ex ia IIB T4...T3 Ga/Gb Ex ia IIB T4...T3 Gb Ex ia IIIC T195°C Da

5 *Warning marking: WARNING – Potential electrostatic charging hazard – See instructions

6 CE marking: **C €** 0044

7 Technical data: See instructions for technical data

^{*} Warning remark is only valid for Sensor VISY-Stick Sump ... Page 4/7

V Technical data

The following electrical input values apply to the filling level sensors:

Electrical variable		TORRIX Ex SC VISY-Stick	VISY-Stick TLS	TORRIX Ex TORRIX Ex C TORRIX Ex RS485 TORRIX Ex TAG VISY-Stick RS485	
Ui	≤	15 V	13 V	30 V	
li	≤	60 mA	200 mA	100 mA / 200 mA*	
Pi	<u>≤</u>	100 mW	625 mW	1 W	
C _i	<	10 nF	20 nF	10 nF	
Li	<	100 μΗ	410 μH	20 μΗ	

Table 2: Electrical input data of filling level sensors

When using the equipment in potentially explosive gas atmospheres please consult table 3 to table 5 for the maximum temperatures depending on temperature classes and category respectively equipment protection levels.

Type TORRIX Ex SC... / VISY-Stick ...

Temperature class	Ta	T _F				
Category 1G resp. EPL Ga (filling	level sensor completely installed	in zone 0)				
T6 -20 °C +50 °C						
T5, T4, T3, T2, T1	-20 °C	. +60 °C				
Category 1/2G resp. EPL Ga/Gb (s	Category 1/2G resp. EPL Ga/Gb (sensor head installed in zone 1, Sensor pipe in zone 0)					
T6	-40 °C +50 °C	-20 °C +50 °C				
T5	-40 °C +65 °C	-20 °C +60 °C				
T4, T3, T2, T1	-40 °C +85 °C	20 0 100 0				
Category 2G resp. EPL Gb (filling	level sensor completely installed	d in Zone 1)				
T6	-40 °C +50 °C	-40 °C +85 °C				
T5	-40 °C +65 °C	-40 °C +100 °C				
T4		-40 °C +135 °C				
Т3	-40 °C +85 °C	-40 °C +200 °C				
T2	-40 C +63 C	-40 °C +300 °C				
T1		-40 °C +450 °C				

Table 3: Service temperatures of the filling level sensors in basic version (without interface board)

_

 $[\]mbox{^{\star}}$ The permissible input current I_i depends on the ambient temperature T_a Page 5/7

Type TORRIX Ex ... / TORRIX Ex C... / TORRIX Ex RS485... / TORRIX Ex TAG... / VISY-Stick ... RS485

Temperature class	Ta	T _F	
Category 1G resp. EPL Ga (filling	level sensor completely installed	d in zone 0)	
Т6	I _i ≤ 100 mA: -2 I _i ≤ 200 mA: -2	20 °C +40 °C 20 °C +25 °C	
T5	I _i ≤ 100 mA: -2 I _i ≤ 200 mA: -2		
T4, T3, T2, T1	-20 °C	. +60 °C	
Category 1/2G resp. EPL Ga/Gb (s	sensor head installed in zone 1, S	Sensor pipe in zone 0)	
Т6	I _i ≤ 100 mA: -40 °C +40 °C I _i ≤ 200 mA: -40 °C +25 °C	I _i ≤ 100 mA: -20 °C +40 °C I _i ≤ 200 mA: -20 °C +25 °C	
T5	I _i ≤ 100 mA: -40 °C +55 °C I _i ≤ 200 mA: -40 °C +40 °C	I _i ≤ 100 mA: -20 °C +55 °C I _i ≤ 200 mA: -20 °C +40 °C	
T4, T3, T2, T1	I _i ≤ 100 mA: -40 °C +85 °C I _i ≤ 200 mA: -40 °C +70 °C	-20 °C +60 °C	
Category 2G resp. EPL Gb (filling	level sensor completely installed	d in Zone 1)	
Т6	l _i ≤ 100 mA: -40 °C +40 °C l _i ≤ 200 mA: -40 °C +25 °C	-40 °C +85 °C	
T5	I _i ≤ 100 mA: -40 °C +55 °C I _i ≤ 200 mA: -40 °C +40 °C	-40 °C +100 °C	
T4		-40 °C +135 °C	
T3	l _i ≤ 100 mA: -40 °C +85 °C	-40 °C +200 °C	
T2	l _i ≤ 200 mA: -40 °C +70 °C	-40 °C +300 °C	
T1		-40 °C +450 °C	

Table 4: Service temperatures of the filling level sensors with 4 ... 20 mA, RS-485 or TAG interface Type VISY-Stick ... TLS

Temperature class	T _a	T _F						
Category 1G resp. EPL Ga (filling	Category 1G resp. EPL Ga (filling level sensor completely installed in zone 0)							
T4, T3, T2, T1	T4, T3, T2, T1 -20 °C +60 °C							
Category 1/2G resp. EPL Ga/Gb (sensor head installed in zone 1, Sensor pipe in zone 0)								
T4	-40 °C +75 °C	-20 °C +60 °C						
T3, T2, T1	-40 °C +85 °C	-20 C 100 C						
Category 2G resp. EPL Gb (filling	level sensor completely installed	l in Zone 1)						
T4	-40 °C +75 °C	-40 °C +135 °C						
Т3		-40 °C +200 °C						
T2	-40 °C +85 °C	-40 °C +300 °C						
T1		-40 °C +450 °C						

Table 5: Service temperatures of the filling level sensors with TLS interface

For use in category 1G resp. 1/2G, the following applies:

The process pressure for the media must be between 0.8 bar and 1.1 bar where explosive vapour-air mixtures are present. If no explosive mixtures are present, the equipment may also be operated outside this area according to the manufacturer's specification.

Page 6/7

It must be ensured through appropriate measures that the temperature (T_a) for the respective temperature class is not exceeded at any point on the sensor head.

General information (see also EN IEC 60079-0, Clause 1):

Zone 0 exists only under atmospheric conditions: Temperature range: -20 °C ... +60 °C Pressure range: 0.8 bar ... 1.1 bar

Oxidants: Air (oxygen content about 21 %)

When using the equipment in potentially explosive dust atmospheres please consult table 6 for the maximum ambient temperatures depending on the maximum surface temperature and dust layer.

Category 1D resp. equipment protection level Da (filling level sensor installed in zone 20)

Maximum surfa	ce temperature	Ambient temperature T					
dust layer ≤ 5 mm	immersed in dust	Ambient temperature T _a					
Types TORRIX Ex SC / VISY-Sti	ck						
T _a + 30 °C	135 ℃	-40 °C +85 °C					
Types VISY-Stick TLS							
135	°C	-40 °C +77 °C					
T _a + 110 °C	Observe EN 60079-14*	-40 °C +85 °C					
Types TORRIX Ex C / TORRIX E	x RS485 / TORRIX Ex TAG / '	VISY-Stick RS485					
I _i ≤ 100 mA: T _a + 40 °C	Observe EN 60079-14*	-40 °C +85 °C					
I _i ≤ 200 mA: T _a + 55 °C	Observe EN 60073-14	-40 °C +70 °C					
Types TORRIX Ex	Types TORRIX Ex						
T _a + 75 °C	Observe EN 60079-14*	-40 °C +85 °C					

Table 6: Service temperatures for potentially explosive dust atmospheres

The filling level sensors achieve a degree of protection:

Protection rating IP68

VI Special conditions of use

1. When using Titanium Floats or Sump Environmental Sensors, the risk of ignition due to impact or friction shall be avoided.

2. When using plastic floats, there is a danger of ignition due to electrostatic discharge.

-

^{*} For the assessment of the temperature clause 5.6.3.3 of EN 60079-14:2013 can consult Page 7/7

ZERTIFIKAT CERTIFICATE

Hiermit wird bescheinigt, dass das unten beschriebene Produkt der Firma This certifies that the product mentioned below from company

FAFNIR GmbH Schnackenburgallee 149 c 22525 Hamburg Deutschland

die Anforderungen der folgenden Prüfunterlage(n) erfüllt. fulfills the requirements of the following test regulations.

Geprüft nach: EN 61508:2010, SIL 2

Tested in accordance with:

Beschreibung des Produktes: Magnetostriktiver Füllstandsensor (Details s. Anlage 1) Magnetostrictive Level Sensor

Description of product: (Details see Annex 1)

Typenbezeichnung: TORRIX ... (Version 4 & 5)

Type Designation: VISY-Stick ...

Bemerkung: Bitte beachten Sie auch die Hinweise in der Anlage

Remark: Please also pay attention to the Annex

Dieses Zertifikat bescheinigt das Ergebnis der Prüfung an dem vorgestellten Prüfgegenstand. Eine allgemein gültige Aussage über die Qualität der Produkte aus der laufenden Fertigung kann hieraus nicht abgeleitet werden.

This certifies the result of the examination of the product sample submitted by the manufacturer. A general statement concerning the quality of the products from the series manufacture cannot be derived there from.

Registrier-Nr. / Registered No. 44 799 13752002 Prüfbericht Nr. / Test Report No. 3523 3926 Aktenzeichen / File reference 8000490968 Gültigkeit / Validity von / from 2019-11-13 bis / until 2024-11-12

TÜV NORD CERT GmbH

Essen, 2019-11-13

TÜV NORD CERT GmbH

Langemarckstraße 20

45141 Essen

www.tuev-nord-cert.de

technology@tuev-nord.de

Bitte beachten Sie auch die umseitigen Hinweise Please also pay attention to the information stated overleaf

Hinweise zum TÜV NORD- Zertifikat

Hints to the TÜV NORD - Certificate

Dieses TÜV NORD - Zertifikat gilt nur für die umseitig This TÜV NORD - certificate only applies to the firm kann nur von der Zertifizierungsstelle auf Dritte transferred to third parties by the certification body. übertragen werden.

bezeichnete Firma und das angegebene Produkt. Es stated overleaf and the specified product. It may only be

Notwendige Bedienungs- und Montageanweisungen Each product must be accompanied by the instructions müssen jedem Produkt beigefügt werden.

which are necessary for its operation and installation.

den serienmäßig in den Verkehr gebrachten Produkten the product launched on the market as a standard. festgestellt werden kann.

Jedes Produkt muss deutlich einen Hinweis auf den Each product must bear a distinct indication of the Hersteller oder Importeur und eine Typenbezeichnung manufacturer or importer and a type designation so that tragen, damit die Identität des geprüften Baumusters mit the identity of the tested sample maybe determined with

die Fertigung der Produkte laufend auf Übereinstimmung mit den Prüfbestimmungen zu überwachen und insbesondere die in den Prüfbestimmungen festgelegten oder von der Zertifizierungsstelle Kontrollprüfungen ordnungsgemäß durchzuführen.

Der Inhaber des TÜV NORD - Zertifikates ist verpflichtet, The bearer of the TÜV NORD - Certificate undertakes to regularly supervise the manufacturing of products for compliance with the test specifications and in particular properly carry out the checks which are stated in the geforderten specifications or required by the test laboratory.

Zertifizierungsstelle umgehend zu verständigen.

Bei Änderungen am geprüften Produkt ist die In case of modifications of the tested product the certification body must be informed immediately.

Zertifizierungsstelle zurückzugeben. Die Zertifizierungsstelle entscheidet, ob das Zertifikat ergänzt werden kann oder ob eine erneute Zertifizierung certification is required. erforderlich ist.

Bei Änderungen und bei befristeten Zertifikaten ist das In case of modifications and expiration of validity the Zertifikat nach Ablauf der Gültigkeit urschriftlich an die original certificate must be returned to the certification body immediately. The certification body decides if the certificate can be supplemented or whether a new

Für das TÜV NORD - Zertifikat gelten außer den In addition to the conditions stated above, all other vorgenannten Bedingungen auch alle übrigen Bestimmungen des allgemeinen Vertrages. Es hat solange Gültigkeit, wie die Regeln der Technik gelten, die der Prüfung zu Grunde gelegt worden sind, sofern es nicht auf Grund der Bedingungen des allgemeinen Vertrages früher zurückgezogen wird.

provisions of the General Agreement are applicable to the TÜV NORD - Certificate. It will be valid as long as the rules of technology on which the test was based are valid, unless revoked previously pursuant to the provisions of the General Agreement.

Dieses TÜV NORD - Zertifikat verliert seine Gültigkeit This TÜV NORD - Certificate will become invalid and zurückgegeben werden, falls es ungültig wird oder für ungültig erklärt wird.

muss unverzüglich der Zertifizierungsstelle shall be returned to the certification body immediately in the event that it shall expire without delay when it has expired or revoked.

ANLAGE ANNEX

Anlage 1, Seite 1 von 2
Annex 1, page 1 of 2

zum Zertifikat Registrier-Nr. / to Certificate Registration No. 44 799 13752002

Produktbeschreibung:Siehe auch Seite 1 des ZertifikatsProduct description:See also page 1 of the certificate

Typbezeichnung: TORRIX ... (Version 4 & 5)

Type designation: VISY-Stick ...

Technische Daten: Versorgungsspannung: $8 V_{DC} ... 50 V_{DC}$

Technical data: Supply voltage:

Umgebungstemperatur: -40 °C ... +85 °C

Ambient temperature:

Schutzart: IP68

Degree of Protection:

Sicherheitsfunktion:FüllstandsmessungSafety function:Level Measurement

Zerttfizierungsstelle der TÜV NORD CERT GmbH

Essen, 2019-11-13

ANLAGE ANNEX

Anlage 1, Seite 2 von 2 Annex 1, page 2 of 2

zum Zertifikat Registrier-Nr. / to Certificate Registration No. 44 799 13752002

Technische Daten:

Technical data:

 Der Einsatz der Sensoren TORRIX ... (Version 4 & 5) und VISY-Stick ... hat unter Beachtung der durch den Hersteller vorgegebenen Sicherheitshinweise in der Technischen Dokumentation und im Sicherheitshandbuch der jeweils aktuellen Fassung zu erfolgen.

The safety instructions of the manufacturer in the technical documentation / safety manual in its current valid version must be taken into consideration when using TORRIX ... (Version 4 & 5) and VISY-Stick....

- 2. Für eine vollständige Beurteilung der funktionalen Sicherheit des Gesamtsystems müssen alle Anforderungen der EN 61508 auf alle Teilsysteme und somit auf die gesamte Sicherheitsfunktion angewendet werden.

 To accomplish a complete functional safety assessment of the whole system, all requirements of EN 61508 must be applied to all subsystems and therefore to the overall safety function.
- Die Gültigkeit der Bewertung ist ausschließlich für die im technischen Bericht 3523 3926, vom 08.11.2019 beschriebenen Hard- und Softwareversionen gegeben.

The validity of the assessment is only given for the hard- and software versions described in technical report 3523 3926 as of 08.11.2019.

Zertifizierungsstelle der TÜV NORD CERT GmbH

Essen, 2019-11-13

Edition: 11.2019

Safety manual in accordance with series of standards EN 61508

Level sensor type TORRIX ... and type VISY-Stick ...

I Range of application

The level sensors are suitable for areas in which a safety-related subsystem according to EN 61508 with SIL 2 is mandatory.

II Standards

The level sensors are designed in accordance with the following standards

EN 61508:2010, all parts Functional safety of electrical/electronic/programmable electronic safety-related systems

III Instructions for safe ...

III.a ... use

This safety manual applies to all level sensors from hardware version 4 and from firmware version 4.9 upwards. The version numbers can be read with differences:

TORRIX ... HART ...: The version numbers can be read out using the configuration program FAFNIR HART-Setup.

TORRIX ... RS485 ...: The firmware version can be read out using the MODBUS ASCII protocol.

TORRIX ... SC ... and VISY-Stick ...: The version numbers can be read out using the configuration program VISY-Setup or the FAFNIR protocol Universal Device Protocol (UDP). The respective technical documentation is to be consulted for the use of the named options.

TORRIX ... TAG ...: The firmware version is issued at regular intervals in the identification message. The field name is "Firmware Version" and has a length of two bytes.

In principle, the level sensor indicates the correct fill level (plausibility check) and / or, in the case of a detected error, an error value (safe state), which corresponds to a mode of operation with a continuous requirement. The safe state is reached within ten seconds. The safety function is ensured differently depending on the level sensor.

It must be ensured that there are no strong magnetic fields in the area of the probe tube. In addition, the safe use with adhering liquids is not guaranteed.

Туре	Approval	Electrical design	Struc- ture	Measuring accuracy	Mechanical design	Tempera- ture range HHT HT LLT LT NT	Maximum temperature High temperature (HT) Minimum temperature Low temperature Normal temperature	-40 °C +450 °C -40 °C +250 °C -200 ° C +80 °C -65 °C +125 °C -40 ° C (+85) +125 °C
					n nB 90B B Flex PL SP	n = sensor to sensor tube Sensor tube Flexible ser Plastic coat	or tube with 12 mm diame tube \emptyset , e.g. 6 (mm) ube \emptyset ; Sensor tube not cen be bent 90° in front of the se e not centered on the sen- asor tube ($\emptyset_{\text{sensor tube}}$: F = ing against very aggressivube, e.g. for sampling	stered on the sensor head sensor head and Bypass sor head (Bypass) 13 mm; T = 12 mm)
				-5T -A5T -A	Increased r		ensors t accuracy and five tempe t accuracy (Advanced)	rature sensors
			VT	Standard co		tion resistant	t for portable tanks	
		C HART HART C RS485 SC TAG	4 20 4 20 4 20 RS-485 Serial of	mA interface mA interface mA interface interface communicati terface; signa	e with HART	ernal setting protocol int protocol and ection to iso	g button ernal setting button d without internal setting plating amplifier VP or N	
	Ex	Without Ex With Ex ap		al				
TORRIX	Magneto	strictive leve	el sensor	(from version	on 5) with te	rminals or co	nnection plug	

Type code III.a1: Level sensor TORRIX ...

System	Туре	Accuracy	Sensor tube	Usage	Interface			
					RS485 TLS	For connection to isolating amplifier VP or VPI For connection to an RS-485 interface For connection to a TLS (Veeder-Root)		
				Biodiesel E15 Ethanol Interstitial LPG N Sump Dispenser Sump Manhole Temp	Level sensor; Et Device for mon Level sensor; Level sensor; A Environmental tion (product / Environmental (product / water	iodiesel thanol admixture up to 15 % thanol nitoring intermediate chambers in double-walled tanks PG dBlue sensor for monitoring the dispenser sump with liquid distinc- water) sensor for monitoring the manhole with liquid distinction		
			Flex	Rigid sensor tu Flexible sensor				
		Advanced	Standa Increas	rd ed accuracy				
	Stick	·						
VISY-	V olume	e Informatio	n Sy sten	n				

Type code III.a2: Level sensor VISY-Stick ...

III.b ... assembling and dismantling

For level sensors with connection board, only the cover of the connection housing may be removed for electrical installation and - by means of push buttons - for adjusting the level sensor. After installation, the connection housing must be closed again.

Also, the floats may be removed from the probe tube. When mounting the floats, pay attention to the correct orientation.

III.c ... installation

To integrate the devices in the equipotential bonding, a PA terminal is provided on the sensor head. For functional safety, it is relevant that the probes are integrated in the equipotential bonding. For the level sensors with screw terminals, the terminal designation is "+" and "-" For level sensors with M12 male connectors, the pin assignments are as follows:

Pin	TORRIX SC VISY-Stick	TORRIX C TORRIX TAG VISY-Stick TLS	TORRIX RS485 VISY-Stick RS485	M12 Cable (Female)
1	+	+	+	
2	А		A (+)	Pin3 Pin4
3	-	-	-	
4	В		B (-)	Pin2 Pin1

Table III.c: Terminal assignment of the sensors

III.d ... adjustment

No SIL-relevant adjustments are required for operation of the sensors.

III.e ... putting into service

Before putting into service, all devices must be checked of right installation and connection. The electrical supply, as well of connected devices, must be checked.

III.f ... maintenance (servicing and emergency repair)

Generally, the level sensor is maintenance-free. In the event of a defect, it must be sent back to the manufacturer or one of its representations.

If an error occurs, e.g. no float on the probe tube, the corresponding diagnostic error is issued. If the error is corrected during active operation, the sensor leaves the error mode.

Level sensors with 4 ... 20 mA interface

In the event of a fault, the residual current flows (3.6 mA or 21.5 mA, whichever is set). If the fault current of 21.5 mA can not flow, e.g. if there is a low supply, the fault current of 3.6 mA is automatically set.

Level sensors with HART protocol

The second data byte of the level sensor response contains the device status. The flag "Device malfunction" (0x80, bit 7) signals a device error. If the "More Status Available" flag (0x10, bit 4) is also set, then device-specific status bits (byte 0) can be queried:

Bit	it Fault Description					
0	0 HART parameters HART parameters have been changed illegally					
1	Sensor parameters	Sensor parameters have been changed illegally				
2	2 Measurement No measurement possible					
3	Error counter	Too many errors during the measurement				
4	Undervoltage	Supply voltage is too low				

Table III.f1: Device-specific status bits in the HART protocol

Level sensors with DDA protocol:

In the event of an error, the error code "E102" is output in the fill level data field.

Level sensors with H, Modbus, UC and UDP protocol:

In the event of an error, the status code 1 is output.

Level sensors with LC protocol:

In the event of an error, the status bit (bit 7) in the status byte is set to 1.

Level sensors with TAG protocol

In the event of an error, the status bit (bit 23) is set to 1 and the fill level indicates the cause of the error:

Fill level (only bits 22 0)	Status information
0x000000	General problem with the sensor
0x000001	RAM error
0x000002	Parameter error
0x000003	The float is too close to the end
0x000005	The float is upside down
0x000007	Switched ON (power up) or reset (Reset)
0x7FFFF	Level overflow

Table III.f2: Device-specific status bits in the TAG protocol

Level sensors with TLS interface:

For each measurement, the probes are switched on for approximately 500 ms. If the probe is unable to perform regular measurements, the measurement is marked as invalid by falsification of the parity bit.

Page 4/5

IV Safety related codes

Parameter		Va	lue	
Safety Integrity Level	SIL 2			
Hardware fault tolerance	HFT = 0			
Security related subsystem	Туре В			
Failure rate [h ⁻¹]	λ_{SD}	λ_{SU}	λ_{DD}	λ_{DU}
TORRIX	8.53E-09	3.46E-07	8.34E-07	1.38E-07
TORRIX C / TORRIX TAG	4.11E-08	3.13E-07	8.13E-07	1.20E-07
TORRIX HART C	3.95E-08	3.59E-07	8.10E-07	1.16E-07
VISY-Stick RS485 / TORRIX RS485	3.95E-08	2.65E-07	7.73E-07	1.10E-07
VISY-Stick / TORRIX SC	3.95E-08	1.87E-07	7.25E-07	9.82E-08
VISY-Stick TLS	3.95E-08	2.33E-07	8.19E-07	1.15E-07
Mean frequency of dangerous failure per hour, PFH [h-1]	See failure ra	te λ _{DU}		
Mean Time to Recovery	MTTR = 8 h			
Interval of the retest	$T_1 = 1$ year			
Architecture	1001			

Table IV: Safety related codes

V Additional requirements for software elements

There are no requirements for software elements.

Government of India Ministry of Commerce & Industry Petroleum & Explosives Safety Organisation (PESO) 5th Floor, A-Block, CGO Complex, Seminary Hills, Nagpur - 440006

E-mail: explosives@explosives.gov.in

Dated: 22/09/2020

Phone/Fax No: 0712 -2510248, Fax-2510577

Approval No : A/P/HQ/MH/104/6555 (P479308)

To,

M/s. FAFNIR GmbH, Scnackenburgallee 149 c,Hamburg 22525 GERMANY

Sub: Approval of Filling Level Sensors. under Petroleum Rules 2002- Regarding.

Sir(s),

Please refer to your letter No. OIN576302 dated 11/09/2020 on the subject.

The following Ex electrical equipment(s) manufactured by you according to EN 60079-11: 2012, EN 60079-26: 2015, EN/IEC 60079-0: 2018, standards and covered under TUV NORD CERT GmbH Test reports mentioned below is/are approved for use in **Zone 0** of Gas IIB/IIC hazardous areas coming under the the Petroleum Rules, 2002 administered by this Organization.

Sr.		Safety		Safety Equipment			Test Agency			
No	Description	Protection	reference Number	Name	Certificate No.	Certificate Date	Drawing no			
1	Filling Level Sensor type VISY-Stick and type TORRIX Ex	Ex ia IIC T6T4 Ga or Ex ia IIB T6T4 Ga or Ex ia IIC T6T5 Ga or Ex ia IIB T6T5 Ga or Ex ia IIC T4 Ga or Ex ia IIB T4 Ga	P479308/1	TUV NORD CERT GmbH	TUV 99 ATEX 1496 X Issue 02	19/02/2020	PF025B031 Rev B, PF025B059 Rev C			

This Approval is granted subject to observance of the following conditions:-

- 1)The design and construction of the equipment shall be strictly in accordance with description, condition and drawings as mentioned in the TUV NORD CERT GmbH Test Reports referred to above.
- 2)The equipment shall be used only with approved type of accessories and associated apparatus.
- 3)Each equipment shall be marked either by raised lettering cast integrally or by plate attached permanently to the main structure to indicate conspicuously:-
 - (a) Name of the manufacturer
 - (b) Name and number by which the equipment is identified.
- (c) Number & date of the test report of the TUV NORD CERT GmbH applicable to the equipment.
 - (d) Equipment reference number of this letter by which use of apparatus is approved.

(e) Protection level.

- 4) A certificate to the effect that the equipment has been manufactured strictly in accordance with the drawing referred to in the TUV NORD CERT GmbH Test report and is identical with the one tested and certified at TUV NORD CERT GmbH shall be furnished with each equipment.
- 5) The customer shall be supplied with a copy of this letter, an extract of the conditions and maintenence schedule, if any, recommended by TUV NORD CERT GmbH in their test reports and copy of instructions booklet detailing operation & maintenance of the equipment so as to maintain its Flame Proof characterestics.
- 6) The After sales service and maintanance of subject equipment shall be looked after by your representative Gilbarco Veeder Root India Pvt Ltd, B-Wing First Floor Art Guild House, Phoenix Market City, Kurla (West), Mumbai 400 070

This approval also covers the permissible variations as approved under the TUV NORD CERT GmbH test reports referred above. This approval is liable to be cancelled if any of the conditions of the approval is violated or not complied with . The approval may also be amended or withdrawn at any time, if considered necessary in the interest of safety.

The field performance report from actual users/your customers of the subject equipment may please be collected and furnished to this office for verification and record on annual basis.

The Approval is Valid upto 31/12/2024

Yours faithfully,

(Ninad Dattaram Gawade)
Dy. Controller of Explosives
For Chief Controller of Explosives
Nagpur

Copy to:

- 1. Jt. Chief Controller of Explosives, West Circle, MUMBAI
- 2. Gilbarco Veeder Root India Pvt Ltd,B-Wing First Floor Art Guild House, Phoenix Market City, Kurla (West), Mumbai 400 070

for Chief Controller of Explosives Nagpur

(For more information regarding status, fees and other details please visit our website http://peso.gov.in)

This is System Generated document. Signature is not required.

Disclaimer: This page gives the latest action taken by this organization on your application. This page is made available for the information of concerned applicant/licensee only. All efforts have been made to secure this information. However, PESO will not be responsible for any misuse of the information by unauthorized persons including the hackers.

FAFNIR GmbH Schnackenburgallee 149 c 22525 Hamburg, Germany T: +49 / 40 / 39 82 07– 0

E-mail: info@fafnir.com Web: www.fafnir.com